IMR OpenIR
表面机械研磨导致的AISI 52100钢表面纳米化微观结构及摩擦性能研究
其他题名An investigation on microstructure and wear property of AISI 52100 steel subjected to surface mechanical attrition treatment
周蕾
学位类型博士
导师卢柯
2008-05-24
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词纳米材料 表面机械研磨处理 Aisi 52100钢 晶粒细化 渗碳体分解 位错滑动 碳元素mapping(c-map) 有限元分析 退火 耐磨性能
摘要表面机械研磨处理(SMAT)能够实现金属材料的表面纳米化以提高其整体性能,同时也为研究塑性变形导致的晶粒细化机制提供理想样品。工程材料大多为多相合金,深入系统地研究多相合金在SMAT过程中的纳米晶形成机制以及各相化学成分的变化具有重要的意义。低塑性导致纳米材料在摩擦磨损等使役过程中容易发生断裂,通过适当工艺使其达到良好的强塑性配合,可拓展纳米材料的工程应用。 本工作选用球化退火态AISI 52100钢样品进行SMAT处理以及后续真空退火处理;利用光学显微镜(OM)、X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨电子显微镜(HRTEM)等方法系统研究了AISI 52100钢SMAT导致的晶粒细化及渗碳体分解过程;利用XRD、TEM等方法表征了AISI 52100钢纳米结构表层的热稳定性,采用维氏硬度计、SRV摩擦实验机分析了纳米结构表层的耐磨性能与硬度、塑性之间的关系。主要研究结果如下: 1.经过SMAT处理,AISI 52100钢表面形成厚约60 m的纳米晶层,5 m深处样品平均晶粒尺寸约为8 nm。表面层微观结构沿深度方向呈梯度分布,由表及里依次可分为纳米结构区、超细晶区、深层变形区。 2. 表面机械研磨AISI 52100钢晶粒细化过程具有以下主要特征: (i) 渗碳体粒子间形成位错墙、位错缠绕结构,将铁素体分割为细小的位错胞块; (ii) 随着应变量的增加,位错缠绕结构及位错墙密度增大,并逐渐演变为亚晶界乃至大角晶界,尺寸不断下降的新晶粒形成; (iii) 当铁素体晶粒细化到渗碳体颗粒尺寸以下时,渗碳体内沿{110}及{100}滑移面开动大量位错,其中铁素体位错墙或晶界和两相界面交叉诱发了渗碳体滑移系的开动。伴随着铁素体晶粒的不断细化,多系位错滑移逐步将渗碳体颗粒切割为纳米尺度的碎片并与铁素体基体机械混合。最终在大应变量、高应变速率和多向载荷的共同作用下,样品表层形成等轴、随机取向的纳米晶粒。 (iv) 与相同条件下SMAT处理后的纯铁样品相比,AISI 52100钢中弥散分布的渗碳体颗粒显著加速了铁素体的细化进程:两相界面可为铁素体塑性变形提供大量位错源,提高基体的位错增殖速率;铁素体位错的滑移在两相界面处受阻,容易迅速形成小间距位错墙或位错缠绕结构,进一步转变为亚晶界及高角晶界而细分原始粗晶;渗碳体碎化导致界面面积的增多也加速了铁素体的纳米化。 3.AISI 52100钢表层的渗碳体颗粒在SMAT过程中发生分解,其含量随深度的减少而逐渐下降。结构及成分分析(C-map)结果显示渗碳体分解与位错滑移之间存在内在联系。在SMAT处理过程中渗碳体内部开动大量位错并滑过两相界面,导致渗碳体滑移带附近出现碳元素的贫化层,而溶解的碳原子极有可能择优重新分布到滑移台阶下方铁素体位错核心或晶粒界处,形成碳原子富集区(“碳气团”),即位错滑移是诱发渗碳体分解的主要因素。随着内部位错滑移的加剧,渗碳体可沿其滑移带以一种不连续的方式逐步发生分解。 4.有限元分析表明渗碳体滑移台阶的下方出现拉应力区,且其尺寸随台阶长度的增加而增长,而滑移台阶和拉应力区的增大有利于容纳更多的铁素体位错或晶粒界,这样溶解的碳原子有可能更多地偏聚于该区域。C-map中的“碳气团”尺寸也随滑移台阶长度的增加而增长,与有限元分析相互吻合。 5.退火实验表明AISI 52100钢样品的纳米结构表层具有很高的热稳定性。当退火温度低于973K时,铁素体晶粒未发生明显长大。 6.表面机械研磨AISI 52100钢样品的耐磨性能与粗晶样品相当。退火处理后,随铁素体晶粒尺寸(Da)的增加,AISI 52100钢纳米结构表层的耐磨性能先提高后降低,并在Da=32 nm时达到最佳,其磨损量在70 N载荷下仅为粗晶样品的1/4。样品的塑性随Da的增大而增大,而硬度随Da的增大而减少,在Da=32 nm时硬度和塑性达到最优化配合,直接导致样品在该尺寸下具有最佳耐磨性能。同时Da=32 nm的样品向对磨副WC球表面发生最为明显的材料转移,可减少WC球表面坚硬粒子与磨损试样的直接接触,有效降低样品磨损量。
其他摘要Surface mechanical attrition treatment (SMAT) can promote the global properties of metallic materials by generating a nanostructured surface layer. Meanwhile this technique provides with ideal specimens to study the underlying mechanism of grain refinement induced by plastic straining. Since most engineering materials are multi-phase alloys, understanding of their intrinsic grain refinement mechanism and chemical compositional changes induced by SMAT is crucial. Low plasticity makes nanocrystalline (nc) materials prone to fracture during wear, and it is helpful for industrial applications of the nc materials to gain an optimized combination of strength and plasticity through proper heat treatments. In this work, an AISI 52100 steel containing spheroidal cementite particles dispersed in a ferrite matrix was subjected to the SMAT followed by annealing. Strain-induced microstructure evolution, including grain refinement of both phases as well as decomposition of cementite, was systematically investigated by using optical microscope (OM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM). The thermal stability of the top surface layer was examined by using XRD and TEM. The relationship between hardness, plasticity and wear resistance of the top surface layer was analyzed by using Vickers hardness tester and ball-on-disk tribometer. The main results are followed: 1. A nanostructured surface layer with thickness of about 60 m was fabricated on the AISI 52100 steel plate by means of SMAT. The average grain size at a depth of 5 m is about 8 nm. Owing to the gradient variation of microstructures, the SMAT surface layer can be subdivided into three sections along the depth, i.e., nanostructured regime, ultrafine-grained regime and deformed regime. 2. The strain-induced grain refinement process manifests the following characteristics: (i) Dense dislocation walls (DDWs) and dislocation tangles (DTs) were formed between cementite particles subdividing ferrite grains into refined blocks. (ii) Accumulated DDWs and DTs evolved gradually into subboundaries and highly misoriented grain boundaries (GBs) under further strain, leading to the continuous grain refinement of the ferrite matrix. (iii) When ferrite grains were refined to sizes smaller than that of cementite particles, plastic deformation occurred in cementite, characterized by dislocation gliding along the {100} and {110} planes. Dislocation gliding in cementite is initiated at intersections of the cementite/ferrite(/) interfaces and GBs or DDWs in ferrite. Accumulated multiple gliding progressively refined cementite into nano-sized cementite particles mixed within ferrite matrix upon straining. Due to a large strain with a high strain rate as well as the multidirectional repetitive loading, equiaxed nanocrystallites with random crystallographic orientations were formed. (iv) Compared with the strain induced grain refinement in the pure Fe under the same SMAT processing, the refinement process of ferrite in AISI 52100 steel was much facilitated by the presence of dispersed cementite particles, as the / interfaces are effective nucleation sites for dislocations and also barriers for dislocation motions. Meanwhile the increase in interface area due to the fragmentation of cementite further enhanced the nanocrystallization of ferrite. 3. The cementite phase was chemically decomposed in the surface layer of the SMAT steel plate. The result of structural and spatial compositional analyses revealed the intrinsic correlation between dislocation slip and cementite dissolution. During SMAT, slip dislocation crossing cementite resulted in carbon depletion in slip bands and the dissolved carbon atoms may prefer to relocate themselves in the ferrite dislocation cores and/or grain boundaries near the slip steps. With accumulated slips, cementite might be decomposed along the slip bands in a spatially discrete manner. That is to say, dislocation slip is the main cause of cementite decomposition. 4. Finite element analysis showed that a tension stress exists below the step with the size of tension stress field proportion to the step length. It implies that larger tension stress field may favor accommodation of more ferrite dislocations and GBs below the step when more slip dislocations (in cementite) arrive at the interface, which might induce more carbon atoms trapped there. All of these are in a good agreement with the measured results of C-map that the size of carbon atmospheres is larger for larger steps. 5. The nanostructured surface layer of AISI 52100 steel has high thermal stability. The grain coarsening of ferrite is less pronounced with a slight increment in grain sizes when the annealing temperature is below 973 K. 6. The nanostructured surface layer of AISI 52100 steel exhibits a wear resistance comparable to that of the original coarse-grained (CG) steel. After annealing, the wear resistance of the nanostructured steel sample increases when the ferrite grain size (D) increases from 8 nm to 32nm, and decreases with a further increase in D. The highest wear resistance in the sample with D=32 nm, which corresponds to the most significant material transfer on the mating ball, originates from the optimized combination of high hardness and moderate plasticity. The wear volume of the sample with D=32 nm is about 1/4 of that of the CG sample at a load of 70N
页数123
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17003
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
周蕾. 表面机械研磨导致的AISI 52100钢表面纳米化微观结构及摩擦性能研究[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[周蕾]的文章
百度学术
百度学术中相似的文章
[周蕾]的文章
必应学术
必应学术中相似的文章
[周蕾]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。