IMR OpenIR
泡沫材料内流体流动及热、电传输规律的研究
其他题名The fluid flow, heat and electricity transport in porous materials
许卫刚
学位类型博士
导师张劲松
2008-05-31
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词泡沫材料 流体流动 换热 物质传输 计算模拟
摘要泡沫材料由于具有优良的机械和热物理性能而得到广泛应用。人工泡沫材料是一种新型的结构与功能材料,它的出现和发展使得泡沫材料除了应用于传统领域外,其新的应用方向和应用潜力也逐渐成为人们关注和研究的热点。研究多孔介质内流体流动及其它物质传输的基本规律,是这类材料应用于生产实际的基础。本文运用计算机模拟的方法,结合部分实验,研究了泡沫材料,特别是三维连通泡沫材料内流体流动特性以及热、电传输的基本规律。对基于三维连通正十四面体骨架模型的泡沫材料,主要得出了以下结论: 得出了单相流体流过泡沫材料时,流动从线性流到非线性流过渡的雷诺数范围;根据雷诺数的不同,可视化了泡沫内流体流动的三种类型,包括Darcy流,Forchheimer流和Froude流。计算得出了泡沫材料的渗透系数和惯性系数,分析研究了影响这两个参数的因素。通过对所得数据的三维拟合,得出了综合反应孔隙率和孔径尺寸对渗透系数和惯性系数影响的经验关系式。 研究了多孔材料有效导热系数随体积分数变化的规律。泡沫材料的有效导热系数随体积分数的增加而上升,不同计算模型之间的变化趋势差别不大。拟合计算结果得出比热导率随体积分数变化的经验关系式。热量在泡沫中的传递是各向异性的。垂直温度场方向的筋中通过的热流量非常低,而平行于温度场方向的筋上通过的热流量很高——热量主要是靠平行于温度场的筋来传递的。通过实验测得了实际SiC泡沫材料的有效导热系数。对比所得实验与计算数据,二者吻合良好。 等壁面温度条件下,三维连通泡沫结构的对流换热系数随流动速度的增加而增加;随单胞尺寸的增加而减小。存在一个最佳单胞大小和体积分数的相互匹配,使换热效果达到最优。在所计算的范围内,单胞尺寸为1mm,体积分数为22.8%的泡沫在相同的泵功率下具有最小的热阻。泡沫内的温度场和速度场的分布具有不均匀性;二者在很大程度上具有协调性。 和热导率相似,泡沫材料的有效电导率随体积分数的增加而增大。胞数量和胞尺寸大小对电导率的影响不明显。通过计算孔隙率在8.3%~81.1%范围内SiC泡沫陶瓷的有效电导率,并对所得数据进行数值拟合,得到了三个经验关系式。这三个经验关系式以分段函数的形式适合于高、中和低孔隙率范围、孔隙率从0~100%材料的电导率和体积分数的关系。将计算结果以无量纲量的形式表达之后,所得关系式亦可应用于具有相同结构、不同材质的泡沫材料有效电导率的计算。分析计算所得的电压和电流分布云图表明,和热导率的传递情况相同,电流在多孔材料中的传导也是各向异性的,即电流优先从与电场方向平行的筋上通过,而与电场方向垂直的筋上几乎没有电流通过。电流密度最大值出现在筋节点的位置。
其他摘要Due to their outstanding thermo-physical and mechenical properties, porous materials are widely used in every sections of the national product. As a relatively new type of structural and functional materials, the artificial porous materials, addition to their conventional applications, are arose increasingly interesting on their new potential utilizations in other fields. Reseashing the principles of fluid flow and other mass transport phenomena in porous materials are essential to their practical applications. In this work, the single phase fluid flow characteristics and the heat electricity transport principles in porous materials, mainly in three reticulated porous materials, are intensively investigated by computational simulation techniques with a small amount of experiments. Based on the tetrakaidecahedron skeleton structure model designed by computer, the conclusions can be drawn as follow: The Reynold’s number sphere describing flow patterns transition from linear to nonlinear flow in porous material was obtained. Three flow regimes in porous media, including Darcy’s regime, Forchheimer’s regime and Froude’s regime, were visualized and discussed. Parameters, such as permeability, inertia coefficient, and friction factor, were obtained in order to describe the fluid flow characteristics of porous media. The influence of foam structure on the fluid flow characteristics was elucidated. Empirical correlations comprehensively reflecting the influences of parameters, such as porosity and pore diameter on permeability and inertia coefficient were fitted. The effective thermal conductivity keff of three-dimensional (3D) reticulated SiC foams increases as the volume fraction f increases. However, there were no systematic changes detected in keff when the cell size and the cell models of the foam vary at a fixed volume fraction. The keff of SiC foams as a function of f was obtained. Compared the experimental results with the calculated ones, it indicated that the outcome can be widely applied in estimating the effective thermal conductivity of other foam materials. The calculated results indicated that the heat transfer in the foam is anisotropic, that is, the heat flux is superior to pass through the struts which parallel to the temperature gradient. The heat flux reaches to a relative high value at the node position. Under the equal wall temperature boundary condition, the convection heat transfer coefficient of three reticulated foam materials increases with the fluid flow velocity, and decreases with the cell size. Existing a best match of cell size and volume fraction, it makes the convection heat exchange reached its highest effectivity. In the computing sphere, the foam with its cell size and volume fraction of 1mm and 22.8% has the lowest heat resistance under the same pump power. The velocity field and temperature field in the porous material are nonuniform, and have harmony with each other. Similar to their thermal conductivity, the electrical conductivity of foam materials increases with the volume fraction. The influence of the cell size on the electrical conductivity is not obvious in foam materials. The calculated results agree well with the experimental results. By calculating the electrical conductivity of SiC foam in a whole range of the porosity, three correlations, which describe the relationship between the ratio electrical conductivity and the volume fraction, were derived from the mathematic fitting. After non-dimensionalizated, these equations can be widely applied in predicting the electrical conductivity of other foam materials with the similar structure. The calculated results indicate that the electrical current transfers is anisotropic in the foam, that is, the current is superior to pass through the struts which parallel to the electric field. The higher current density was obtained at the node position in the foam.
页数132
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17052
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
许卫刚. 泡沫材料内流体流动及热、电传输规律的研究[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[许卫刚]的文章
百度学术
百度学术中相似的文章
[许卫刚]的文章
必应学术
必应学术中相似的文章
[许卫刚]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。