IMR OpenIR
SiC和C泡沫性能的数值模拟
其他题名investigation on properties of SiC and C foams by numerical simulation
张洪涛
学位类型博士
导师张劲松
2007-06-09
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词碳化硅泡沫 碳泡沫 计算机模拟 吸波材料 流体动力学
摘要三维连通网络碳化硅(SiC)和碳(C)泡沫材料具有高孔隙率、高比表面积、高比强度、良好的吸波性能、传热性能、流体分配性能等,主要应用于过滤器、催化剂载体、热交换器、吸声、吸波材料等方面。本文使用计算机模拟技术研究了三维连通SiC和C泡沫材料在吸波、传热、力学、流体力学方面的特性,并通过实验验证了C泡沫的吸波性能以及SiC的传热性能。研究结果表明: SiC泡沫和C泡沫的吸波效果比其块状材料有了较大提高,主要是因为泡沫具有较低的有效介电常数,有利于与自由空间的阻抗匹配;泡沫的三维结构能与入射的电磁场相互耦合,产生感应电流,损耗磁场能量,使得泡沫材料具有伪磁性,增强了吸波能力;泡沫的吸波能力受体积分数、电导率及样品尺寸等因素的影响,通过对这些因素的优化设计,发现了最佳的吸波效果对应的相关参数;复合后的泡沫材料吸波效果大大降低,归因于其有效介电常数的上升,阻抗失配严重。 通过计算四种模型下的热导率随体积分数的变化规律,发现泡沫材料随着体积分数的增加,热导率呈非线性增加。通过对计算结果的分析,拟合出如下的公式用于估算泡沫材料的热导率,即Keff / Kreal=0.0005+0.35 f+0.69 f 2+0.055 f 3。计算中发现,以14面体模型为例,单胞大小、单胞个数等因素对有效热导率的计算结果影响并不是很大。通过分析三维连通网络SiC泡沫中的温度场及热流分布,发现热流量在筋上的分布与筋的方向和温度场的方向有很大的协调关系。泡沫中热量传递主要是靠平行于温度场的筋来实现的,垂直温度场方向的筋中的热流量非常低。 SiC泡沫的有效弹性模量随着体积分数的增加呈抛物线增长,可用式Eeff / Es= f 2来预测泡沫SiC的弹性模量;泡沫SiC材料的泊松比随体积分数的增加而减小,当体积分数增加到0.6之后,有效泊松比趋于定值,并与块状SiC有着相同的数值;分析中发现泡沫筋节点部位应力集中现象明显,因此是泡沫SiC陶瓷的薄弱部位,可能会在这些部位发生断裂。 流体在泡沫介质中流动时,速度是非常不均匀的,存在着流体流动阻力最小的通道,流体易于在这些通道中流过;泡沫介质中,速度矢量方向不再像光管或翅片管那样,而是呈杂乱方向分布,因此当以这种材料填充作热管或换热器件时,会使速度场的方向和温度梯度的方向协同程度加强,从而大大增加换热效率。对于给定单胞大小,随着体积分数的增加,压降增加;对固定体积分数而言,它的压降随着单胞尺寸增加而降低。在同一单胞尺寸下,渗透率随着体积分数的增大逐渐降低;对于固定体积分数,随着单胞尺寸的增大,渗透率升高。惯性系数是随着泡沫介质的复杂通道的曲折性的增加和体积分数增大而增加的。摩擦系数在同一体积分数下,随单胞大小变化不是十分明显,它只与体积分数有关系,体积分数越大,摩擦系数越大。
其他摘要Three-dimensional network silicon carbide (SiC) and carbon (C) foams have found a large spectrum of applications due to their high porosity, high specific surface area, high strength-to-weight ratio and promising microwave absorbing, thermal, fluid dissipating properties. They are used as filter and catalyst carrier elements, as heat exchanger core, microwave/acoustic absorbent and many others. In this work, the microwave absorbing, thermal, mechanical and fluid dynamic characteristics of such foams were intensively studied by using computational simulation technique. The microwave absorbing and thermal properties were validated through experiments. Conclusion can be drawn as follow. The microwave absorbability of SiC and C foams is much higher than their corresponding bulk materials for that they have better impedance match with free space for their low effective permittivity. In addition, their network structure can couple to the incident microwave and induce currents on the struts; therefore the foams have artificial magnetism, which can absorb the magnetic energy so enhance the absorbability. The fraction, electric conductivity and dimensions of specimens exert compound effects on the absorbability. The optimized parameters of such factors were found in the simulation. The absorbability of silica composites significantly decreases compares with that of the SiC-foam because the effective permittivity of a composite is much larger than that of a monolithic SiC-foam, which leads to impedance mismatch much. Based on the calculation of four types of model, it is found that the effective thermal conductivity of a foam increases nonlinearly with the fraction. The correlation between effective thermal conductivity and fraction can be deduced as Keff / Kreal=0.0005+0.35 f+0.69 f 2+0.055 f 3. The cell size and number have little effect on the calculation of the effective thermal conductivity when the tetrakaidecahedral model is employed. The temperature field and heat flux distribution on the struts are coordinated, and the heat conducts mainly in the struts paralleling to the temperature gradient, however the heat transfer in the struts perpendicular to the temperature is very low. The effective elastic modulus of SiC-foam as a function of fraction can be expressed as parabola formula Eeff /Es= f 2. The effective Poisson’s ratio decreases with the increase of the fraction till it reachs to a constant as same as the intrinsic poisson’s ratio of SiC when the fraction is 0.6. As shown in the calculation results, the stress concentration occurs at the joints of the struts, so it is assumed that cracks and failure take place in these areas. The velocity is uneven when fluid flows in foams, and there are some paths with low resistance. The fluid is apt to flow in such paths. Unlike flowing in tube or fined tube, the flow directions in foams are tortuous, which can coordinate with the temperature gradient that parallel to the wall of the tube. Therefore the heat transfer is enhanced when the tube is filled with foams. The pressure drop depends on the cell size and fraction. When the cell size keeps constant, the pressure drop increases with the fraction. However, it decreases with the increase of the cell size at a fixed fraction. The permeability decreases with the fraction at a fixed cell size, and increases with cell size at a fixed fraction. The inertial coefficient increases with the tortuosity and the fraction of the foam. As for the friction factor, it depends weakly on cell size at a fixed fraciton, and strongly on the fraction, i.e. the larger the fraction is, the higher the friction factor is.
页数133
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17057
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
张洪涛. SiC和C泡沫性能的数值模拟[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张洪涛]的文章
百度学术
百度学术中相似的文章
[张洪涛]的文章
必应学术
必应学术中相似的文章
[张洪涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。