IMR OpenIR
冷轧加工与热处理对Ti2448合金组织和性能的影响
其他题名Effect of Cold-rolling and Heat-treatment on the Microstructure and Properties of Ti2448 alloy
崔天成
学位类型硕士
导师杨锐
2007-06-05
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词亚稳β钛合金 冷轧 热处理 显微组织 力学性能
摘要Ti-24Nb-4Zr-8Sn(Ti2448)是一种新型医用亚稳β钛合金。它具有比其它医用金属材料低得多的杨氏模量,可以明显减少应力屏蔽效应和骨吸收效应;不含V、Ni等有毒元素,具有良好的生物相容性和抗蚀性;具有超弹性和高强度的统一,在高应力作用下仍然可以保证材料安全使用。Ti2448合金有较强的Zr和Sn的成分敏感性,当Sn含量略低于Ti2448合金名义成分时容易在变形以及从β相快速冷却时形成α″马氏体,从而影响材料的强度和超弹性以及与低杨氏模量的匹配关系。而这种成分上的微小偏差在工业生产中不可避免。因此,需要对低Sn含量Ti2448合金的组织性能进行研究以保证其实际应用。本文研究了低Sn含量Ti2448合金在不同冷轧形变率下的组织、性能以及热处理对其性能的影响。 实验结果表明,冷轧处理可使合金纳米化。随形变率增加纳米化区域逐渐扩展,强度亦随之增加。但该合金加工硬化率较低,是一种软纳米合金。冷轧可以降低材料杨氏模量但纳米化区域的增加对杨氏模量影响很小,杨氏模量由冷轧变形过程中β相{112}<110>和{001}<110>织构和马氏体{100}<001>和{110}<001>织构的变化而决定。板材{112}<110>织构中横向对应的晶向为杨氏模量最大值<111>晶向,因此横向冷轧板杨氏模量明显高于轧向。 在700°C以上短时再结晶退火处理后,冷轧织构转变为{011}<211>,{112} <110>和较弱的{001}<110>的再结晶织构。由于降低材料杨氏模量的纳米晶组织在退火后完全再结晶,因此材料杨氏模量升高,同时由于晶粒长大以及拉伸时应力诱发马氏体的析出导致材料屈服强度下降但塑性明显上升。在600°C-650°C之间进行短时退火处理后,合金中有α相析出,材料的杨氏模量明显升高;由于这一温度区间内材料的回复和晶粒长大对强度的弱化作用大于析出相的强化作用,因此材料强度要低于冷轧态而塑性较高。冷却方式对再结晶退火后的性能的影响表明,随冷却速率提高材料的强度和杨氏模量降低但塑性和冲击韧性提高。 短时退火处理后对合金在500°C以下进行时效处理,β基体中析出大量α相而使合金强度和杨氏模量升高而塑性下降;在450°C时效处理2-4小时能够得到低模量高强度的最佳匹配。再结晶织构使得再结晶退火并时效处理后轧向板材杨氏模量低于横向板材。对不同形变率板材的再结晶退火并时效处理后性能的研究表明形变率越小的板材时效强化效果越好。
其他摘要Compared with other kinds of metallic materials for biomedical applications, Ti-24Nb-4Zr-8Sn (abbreviated as Ti2448) alloy possesses much low elastic modulus, high strength, excellent corrosion resistance and biocompatibility. The mechanical properties of Ti2448 alloy are sensitive to both Sn and Zr contents originated by their significant suppression contribution on martensitic transformation. This thesis focuses on investigating the effect of martensitic transformation on microstructual evolution and mechanical properties of the Ti2448 with low Sn content, in hope of achieving the balance of low Young’s modulus and high strength by heat treatment. Microstrructre analysis by TEM showed that the cold-rolling results in forming nanocrystallines with increase of deformation ratio. Tensile test at room temperature revealed much weak strengthening during cold-rolling as compared with conventional metallic materials. Both tensile and dynamical Young’s moduli decrease with the increase of cold-rolling. Texture analysis showed that the cold-rolling favors both {112}<110> and {001}<110> texture of the  parent phase with body-centered cubic crystal structure as well as both {100}<001> and {110}<001> texture of the ″ martensite with orthorhombic crystal structure along the rolling direction. Since Young’s modulus along <110> direction is much lower than that along <111> direction of the BCC crystal, the cold-rolled sheets have lower Young’s modulus along the rolling direction. After annealing treatment in single β phase field, the texture of the  phase changes to {112}<110>, {011}<112> and {001}<110>. Due to recrystallization of nanocrystallines, the Young’s modulus is higher than that of cold-rolled alloy. Due to the favour contribution of grain growth on matensitic transformation, the stress- induced phase transformation during tensile test damages seriously the yield strength. After annealing at temperatures ranged from 600 to 650°C, Young’s modulus is higher than that of cold-rolled alloy due to the precipitation of  phase. Since the softening effect of grain growth prevails over the strengthening effect of  precipitation, the yield strength is still lower than that of cold-rolled alloys but the ductility increases significantly. Tensile test also showed that, with the increase of cooling rate after high temperature annealing, the alloy has better ductility and lower strength and Young’s modulus. Ageing at a temperature below 500°C after high temperature annealing leads to increase both strength and Young’s modulus but decrease the ductility due to the precipitation of  phase during ageing treatment. Ageing at 450°C for 2-4 hours is an optimized treatment to reach good balance of low Young’s modulus and high strength. Under identical heat treatments, the radial direction of cold-rolled sheets has higher Young’s modulus than that of rolling direction. After recrystallization annealing plus aging, the smaller deformation ratio leads to higher strength but higher Young’s modulus and lower elongation.
页数84
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17070
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
崔天成. 冷轧加工与热处理对Ti2448合金组织和性能的影响[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[崔天成]的文章
百度学术
百度学术中相似的文章
[崔天成]的文章
必应学术
必应学术中相似的文章
[崔天成]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。