IMR OpenIR
不锈钢和镍基合金在超临界水氧化环境中腐蚀产物膜的表征
其他题名Characterization of corrosion scales grown on 316L stainless steel and alloy 625 exposed to supercritical water
高欣
学位类型硕士
导师韩恩厚
2007-05-26
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业腐蚀科学与防护★
关键词超临界水氧化(scwo) 腐蚀产物膜 316l不锈钢 625镍基合金
摘要超临界水氧化(SCWO)是一种应用前景广阔的有机废物的处理方法。该方法是利用水在超临界状态下能与有机物、O2等完全互溶的特性,将有机废物迅速、彻底的破坏分解,生成无害的小分子化合物。然而,由于SCWO设备在高温、高压和强氧化性环境下服役,设备材料可能发生严重的腐蚀。目前SCWO关键设备的材料腐蚀与防护问题已成为制约这一技术工业化应用的关键问题之一。超临界水(SCW)中形成的腐蚀产物膜的化学和物理性质对材料环境腐蚀失效过程尤其是对破坏初期阶段有很重要的作用,因此深入研究膜的结构及成分特征对认识环境裂纹萌生与环境腐蚀失效机制有重要意义。 本文利用扫描电镜(SEM)、X射线能量色散谱(EDAX)、X射线光电子能谱(XPS)以及X射线衍射(XRD)对316L不锈钢和625 镍基合金在SCWO环境中形成的腐蚀产物膜的形态、结构及化学组成进行了表征,并讨论了腐蚀产物膜的形成机制。 研究了SCW温度和暴露时间对316L不锈钢在含H2O2的SCW中形成的腐蚀产物膜的形态、结构及成分的影响。结果表明,随SCW温度的增加,不锈钢持续增重,增重随温度的变化近似为线性关系。随SCW温度增加,不锈钢表面腐蚀产物膜逐渐变的疏松且不连续,500 oC时甚至出现了较大的孔洞;观察表明,不锈钢在SCWO环境中形成的腐蚀产物膜为双层结构:外层疏松且不均匀,厚约2.2 μm,主要富Fe;内层致密且相对均匀,厚约1.4 μm,主要富Cr;内层与基体之间有很薄的富Ni层。XPS分析发现,随温度的增加,腐蚀产物膜中的Cr从Cr(OH)3向Cr2O3转化,有脱氢发生;Fe由α-FeOOH向α-FeOOH和γ-FeOOH的混合物转化。随着暴露时间的增加,不锈钢持续增重,增重速率先增加后减小。随暴露时间的延长,表面的腐蚀产物颗粒逐渐长大。暴露时间越长,不锈钢腐蚀的越严重,表面发生Fe、Cr、Ni的选择性溶解。研究表明,316L不锈钢在SCWO环境中的腐蚀产物膜的外层生长遵循金属溶解及氧化物沉淀机制,而内层的生长符合固态生长机制。 研究了SCW温度和暴露时间对625镍基合金在含H2O2的SCW中形成的腐蚀产物膜的形态、结构及成分的影响。结果表明,随着温度的增加,625镍基合金持续增重,与316L不锈钢在相同条件下的结果对比发现,同一温度下316L不锈钢的增重值显著高于625镍基合金的增重值。625镍基合金在SCW中形成的腐蚀产物膜比较致密。截面观察表明,625镍基合金在SCWO环境中形成的腐蚀产物膜很薄,厚约1.0 μm,为单层富Ni和Cr的结构,与基体的结合非常紧密。XPS分析发现,随温度的增加,Cr的化合物由Cr(OH)3 向CrO3变化,Cr的价态从+3价增大到+6价;Ni 的化合物由Ni(OH)2 向Ni2O3变化,说明有脱氢现象的发生,同时Ni的价态从+2价增大到了+3价。随着暴露时间的延长,625镍基合金先增重,然后几乎不变,与同等条件下的不锈钢相比,暴露150 h后不锈钢的腐蚀增重近似为625镍基合金的3倍。随暴露时间的延长,腐蚀产物膜的形貌变化非常小,说明时间对625镍基合金在SCWO中的腐蚀影响较小。研究表明,625镍基合金在SCWO环境中的腐蚀产物膜的生长遵循金属溶解及氧化物沉淀机制。 对比625镍基合金及316L不锈钢在SCWO环境中的腐蚀产物膜动力学、结构和成分等特征,结果表明,在SCWO环境下625镍基合金的耐蚀性比316L不锈钢要好,因此建议前者可用作SCWO反应器材料,而后者不适合用作SCWO反应器材料。
其他摘要Supercritical water oxidation (SCWO) is a promising technology which can effectively and safely dispose various organic wastes. This method mainly uses the outstanding properties of supercritical water (SCW) that organics, such as hydrocarbons, and gases like oxygen, become completely miscible with SCW. In SCW, organics can be destructed in a few minutes. However, severe reactor corrosion occurs in SCWO processes since reactors capable of accommodating elevated temperatures and pressures must be used and, potentially, very aggressive environments are present when anions like chlorides or sulfates exist. Studying the corrosion and protection of the materials in SCWO has become a key problem to the widespread application of SCWO. The chemical compositions and structure of the corrosion scales are important for understanding of corrosion process and possible environmentally assisted cracking. In this study, the morphologies, microstructure and chemical compositions of corrosion scales grown on 316L stainless steel and alloy 625 exposed to H2O2-containing supercritical water were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer, an X-ray photoelectron spectroscopy analyzer and an X-ray diffraction analyzer. The morphologies, microstructure and chemical compositions of corrosion scales of 316L stainless steel exposed to SCW at different temperatures and for different time were studied. With an increase of temperature, the mass of 316L stainless steel increased. The results from SEM images indicate that the morphologies of corrosion scales changed with the temperature. The corrosion scales were found to become less continuous with the increase of temperature. There were even many big pores among the grains in the corrosion scale formed at 500 oC. From the cross sections, the corrosion scales formed in SCW consisted of double layers similar to those observed previously in high temperature water. The outer layer was loose and mainly composed of Fe oxide, while the inner layer was compact and composed of mixed Cr and Fe oxides. Ni enrichment was observed at the interface between the metal matrix and corrosion scale. XPS results reveal that with an increase of the SCW temperature, Cr oxides in corrosion scales tended to change from Cr(OH)3 to Cr2O3, Fe oxides changed from α-FeOOH to mixed α-FeOOH and γ-FeOOH. With an increase of time, the mass of 316L stainless steel increased and the velocity of mass gain enhanced first and then lessened. With the increase of time exposed to SCW, the oxide grains grew much larger. Fe, Cr and Ni of 316L stainless steel preferentially dissolved. The possible growth mechanism of the corrosion scales in SCW environment is also discussed. The outer layer grows via a metal dissolution/oxide precipitation mechanism and the inner layer grows via a solid-state growth mechanism. The morphologies, microstructure and chemical compositions of corrosion scales of alloy 625 exposed to SCW at different temperatures and for different time were studied. With an increase of temperature, the mass of 625 alloy increased. The changing trends of 625 alloy was similar to 316L stainless steel, however, mass gain of the latter was much lager than that of the former. The results from SEM images indicate that the morphologies of corrosion scales looked relatively compact at different temperatures. The results of XPS showed that with the increase of temperatures, Cr oxides tended to change from Cr(OH)3 at 400 oC to CrO3 at 500 oC, indicating that Cr in corrosion scales tended to change from trivalence to hexavalence. Ni oxides changed from Ni(OH)2 to Ni2O3, indicating Ni changed from bivalence to trivalence. With an increase of temperature, the mass of 625 alloy increased first and then kept steady. When time increased to 150 h, the velocity of mass gain of 316L stainless steel was almost three times than 625 alloy. With the increase of time exposed to SCW, there was little change of the corrosion scales, indicating time plays a weak role in the corrosion of alloy 625 in SCW. The corrosion scales grow via a metal dissolution/oxide precipitation mechanism. Compared the characterization of corrosion scales of alloy 625 with 316L stainless steel exposed to SCWO, it is indicated that alloy 625 has better corrosion resistance than 316L stainless steel. The former can be a candidate material for SCWO equipment, and the latter is not suitable for application in this environment.
页数65
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17073
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
高欣. 不锈钢和镍基合金在超临界水氧化环境中腐蚀产物膜的表征[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[高欣]的文章
百度学术
百度学术中相似的文章
[高欣]的文章
必应学术
必应学术中相似的文章
[高欣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。