IMR OpenIR
特种储氢材料及其测试设备
其他题名Special Hydrogen Storage Materials and the Measurement Apparatus
程宏辉
学位类型博士
导师杨柯
2007-05-26
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词金属氢化物 Lani5-xalx 循环储氢性能 Lani4.25al0.75/sio2储氢性能 快淬
摘要日益严峻的能源危机和环境污染,使得发展清洁能源成为各个国家的重要议题。氢能和核能作为21世纪的新能源,以其储量丰富,容易获取、没有污染,能量密度高等优点,将逐步应用到人类生活的各个方面。 氚是氢的同位素,是核反应堆的燃料和尖端核武器中的重要原料,在国家未来的能源结构和国防建设中具有不可替代的战略作用。氚的安全储存和输运是氚应用中的关键技术之一,所以发展高效储氚材料具有极其重要的现实意义。 本论文以高效储氚材料的研制开发为背景,结合国际国内储氚材料的研究现状,选择LaNi5-xAlx(x=0~1.2)合金作为主要研究对象。运用X射线衍射(XRD)、扫描电镜(SEM)、激光粒径分析仪、储氢性能综合测试系统、显微维氏硬度计等测试手段,对LaNi5-xAlx(x=0~1.2)合金的晶胞结构、吸放氢性能、热力学性能、动力学性能、抗粉化性能和长期服役性能进行了系统的研究与分析。其中,储氢性能综合测试系统为自行设计和组建。该系统可自动同步采集温度、压力信号和实现对阀门的自动控制,可完成对储氢材料的动力学性能、热力学性能和长期循环吸放氢性能的测试。 研究表明,铸态LaNi5-xAlx(x=0~1.2)合金主相由CaCu5组织构成,而 LaNi3.8Al1.2合金中有少量AlNi3相存在。Al含量的增加对平台压和吸氢量主要起降低作用,但可明显改善动力学性能。通过自行编制的MATLAB晶胞参数计算程序研究表明,该合金随Al含量增加,其晶格参数和晶胞体积都有增加,且呈各向异性膨胀趋势。 通过对铸态LaNi5-xAlx(x=0~1.2)合金循环储氢性能系统的研究,表明合金的抗粉化性能主要由其自身的塑性特征决定,同时,储氢容量对其抗粉化能力也有一定影响。合金的硬度越小,储氢容量越小,其抗粉化能力越强。另外还发现,铸态LaNi5-xAlx(x=0~1.2)合金在经过长期吸放氢循环后其动力学有两种不同的变化趋势,LaNi4.75Al0.25和LaNi4.25Al0.75合金的动力学性能发生恶化,而LaNi5和LaNi3.8Al1.2合金的动力学性能得到改善。这主要是由于颗粒粉化对动力学性能有两种相反的作用。一方面,颗粒粉化能够使合金产生更多的活性表面和缩短氢的扩散距离,从而有利于动力学性能的改善。另一方面,颗粒粉化也会导致自压实现象的产生和导热效率的降低,最终使动力学性能发生恶化。当颗粒较大时,粉化过程的改善作用占主导;而颗粒较小时,其恶化作用占主导。颗粒粒度分布的VMD(volume mean diameter)存在临界值。对于LaNi5-xAlx(x=0~1.2)合金,该VMD临界值大约在20m左右。另外,Al的加入能够明显提高合金长期循环的容量稳定性。 对铸态和快淬态LaNi4.25Al0.75合金经1000次以上循环充放氢后的性能研究表明,这两种合金的吸氢性质均比较稳定,但是存在一些细微的差异:快淬态合金的长期容量衰减要小于铸态合金,其抗粉化性能和滞后性能则明显优于铸态合金。但是,铸态合金的储氢容量要略大于快淬态合金,其活化过程明显比快淬态合金容易得多。 成功通过溶胶-凝胶法和气相二氧化硅法制备出LaNi4.25Al0.75/SiO2复合储氢材料,该材料基本保持LaNi4.25Al0.75基体的优良热力学性能,但是其动力学性能、抗粉化性能及活化性能具有明显优势。 为35MPa增压提纯装置提供了详细的初步设计方案。该装置使用的工作介质是金属氢化物。拟通过两极三相结构实现氢气流(流速≥100l/min)的平稳输出,同时使1~2MPa的普氢(≤99%)在低于453K温度下增压至35MPa以上,而且纯度达到99.999%以上。
其他摘要Energy crisis and environmental pollution are urging many countries to develop new energies. Hydrogen energy and nuclear energy have many attractive advantages, such as high energy density, rich reserves and almost no pollution. They are new energies of the 21st century and will be applied in various living aspects of human beings. As one of the three hydrogen isotopes, tritium has important strategic value. It is the fuel of nuclear reactor and one of important materials needed in manufacturing advanced nuclear weapons. Transport and storage for tritium is one of the key technologies in its application. Thus, the development of effective tritium storage material has practical significance. On the basis of current domestic and oversea research status of tritium storage materials, LaNi5-xAlx(x=0~1.2) alloys were chosen to study in the present work. By the means of X-Ray diffraction (XRD), scanning electron microscope (SEM), laser particle size analyzer, hydriding-dehydriding test and micro-hardness test, material characteristics, such as the crystal structure, hydriding-dehydriding behavior, the relevant thermodynamics and kinetics characteristics, etc., were systematically studied. The hydriding-dehydriding test apparatus were designed and established. It is found that the major phase existed in LaNi5-xAlx(x=0~1.2) is CaCu5-type structure. However, in LaNi3.8Al1.2, a tiny AlNi3 phase was observed. In the system, the increase of Al content mainly leads to decrease of hydrogen capacity and hydrogen pressure, but improves the kinetics. Via the home-made MATLAB program, it was found that Al element can increase the lattice volume at different expansion rates in a and c axis directions. From systematic investigation of LaNi5-xAlx(x=0~1.2) cyclic properties, it can be concluded that the alloy’s pulverization resistance is determined by its character of plasticity, and is partially influenced by its hydrogen capacity. The lower the hardness and the hydrogen capacity of the alloy are, the better the property of pulverization resistance is. Besides, in the alloys, different tendencies of absorption kinetics were observed after long-term cycling. The kinetics of LaNi4.75Al0.25 and LaNi4.25Al0.75 alloys were degraded after cycling, while those of LaNi5 and LaNi3.8Al1.2 alloys were improved. The reason is that pulverization has opposite effects on kinetics. On one hand, pulverization produces more active interfaces and shorter hydrogen diffusion distances, which is beneficial to the kinetics. On the other hand, pulverization leads to worsen the transport of hydrogen gas and thermal conductivity, which finally results in the degradation of kinetics. When the particle size is comparatively large, the improvement of kinetics from pulverization becomes the dominant; while the particle size is comparatively small, the degradation of kinetics from pulverization becomes the key factor. For LaNi5-xAlx(x=0~1.2) alloys, the volume mean diameter (VMD) of the particle size distribution has a critical value, about 20 m. The discrepancy of absorption kinetics tendency between annealed induction-melted (AIM) and un-annealed melt-spun (UMS) LaNi4.25Al0.75 alloys after 1000 cycles also supports the viewpoint. Al element increases capacity stability of the alloys after long-term cycling. From the study of hydrogen storage properties of AIM- and UMS- LaNi4.25Al0.75 alloys, it is found that these two alloys have good cyclic properties. But some discrepancies exist: the capacity degradation rate of the UMS alloy is faster than that of the AIM alloy; the pulverization resistance and hysteresis of the UMS alloy are better than those of the AIM alloy, while the capacity of the AIM alloy is a little bit higher, and the activation of the AIM alloy is easier. The LaNi4.25Al0.75/SiO2 composites were successfully prepared by sol-gel method and fumed silica method. The composites keep good thermodynamic properties of the AIM-LaNi4.25Al0.75 alloy, while improving the kinetics, pulverization and activation properties. A primary design scheme of 35MPa hydrogen feeding apparatus was provided in detail. This apparatus uses the metal hydrides as the working medium and can increase the pressure and purity of hydrogen gas from 1~2MPa and <99% to 35MPa and >99.999%, with the working temperature below 453K. The apparatus was designed as a structure of ‘two stages and three phases’, which facilitates the stable output of hydrogen gas with velocity of 100 l/min.
页数125
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17106
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
程宏辉. 特种储氢材料及其测试设备[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[程宏辉]的文章
百度学术
百度学术中相似的文章
[程宏辉]的文章
必应学术
必应学术中相似的文章
[程宏辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。