IMR OpenIR
Cu-Cr合金的高温相平衡及凝固行为研究
其他题名High temperature phase equilibrium and solidification of Cu-Cr alloys
周志明
学位类型博士
导师冼爱平
2007-06-06
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词Cu-cr合金 相图 液相分离 显微组织 凝固
摘要Cu-Cr合金因良好的结合了Cu的良好导电性和Cr的高硬度,在工业上具有广泛的应用,尤其是高Cr含量的Cu-Cr合金是中压真空断路器中使用最多的触头材料。然而在文献中存在两种不同类型的Cu-Cr合金相图,即简单的共晶型相图和偏晶型相图,且不同研究者所测定的Cu-Cr合金相图液相线温度有很大的差别。此外,不同学者对Cu-Cr合金相图中存在亚稳态溶解度间隙有不同的看法。为了澄清Cu-Cr合金相图的类型和验证Cu-Cr合金中的亚稳态溶解度间隙,开展了以下研究: 为了实现对高Cr含量Cu-Cr合金的相图类型和液相线温度的准确测定,将电磁悬浮无坩埚凝固技术和无接触的红外温度测量技术相结合,并采用高纯惰性保护气氛和高纯实验原料创建高纯实验环境,从而消除坩埚材料、测温元件和保护气氛对样品的污染。研究结果表明Cu-Cr合金相图是偏晶型相图,而不是共晶型相图。 通过采用亚正规溶液模型对高Cr含量Cu-Cr合金的液相线温度进行了优化计算,其液相交互作用系数Ωl=(86088-10674XCr)-T(34.39-17.05XCr),偏晶反应温度为2023±20K,偏晶反应成分范围为53~84at.%Cr,液相分离的顶点成分为0.6964,温度为2118.5K。 通过悬淬法成功地实现了更大成分范围Cu-Cr合金的快速凝固。当合金中Cr含量高于15at.%时,悬淬Cu-Cr合金中开始出现亚稳态的液相分离。随着合金中Cr含量的增加,富Cr球的直径不断增大。当合金中Cr含量高于65at.%时,出现了球状富Cr相与板条状的富Cr相。与此同时,在高Cr含量的Cu-Cr合金中出现了许多二次液相分离出来的富Cu相。 由于高温下Cu-Cr合金与坩埚材料发生反应,感应加热熔炼和旋铸Cu-Cr合金都受到污染,澄清了Li和Müller对高温下Cu-Cr合金与Al2O3坩埚材料发生反应与否的争议。当合金中Cr含量大于40at.%Cr时,感应加热熔炼Cu-Cr合金出现了液相分离,可能是由于合金与Al2O3坩埚材料发生反应的生成物促进了合金的液相分离。旋铸Cu71Cr29合金和Cu45Cr55合金出现了明显的液相分离,随着线速度的增加,液相分离的富Cr球直径显著减小。旋铸Cu-Cr合金的显微硬度大大提高,主要是晶粒细化和固溶度增加的结果。
其他摘要Cu-Cr alloys have been found many applications in industries for they exhibit an excellent combination of high mechanical strength and high electrical conductivities. Especially the Cu-Cr alloys with high Cr contents are predominant contact materials for medium-voltage vacuum interrupters. However, there exist two types of Cu-Cr phase diagram in literature, one being a simple eutectic-type and the other a monotectic-type, which give quite different liquidus temperature for the high Cr content alloys. In addition, there has been a discrepancy regarding the existence of a liquid miscibility gap in the binary Cu-Cr phase diagram. In order to clarify the type of the Cu-Cr phase diagram and directly verify the metastable miscibility gap in the undercooled Cu-Cr alloys, researches have been carried out as following: To accurate determination of the type and liquidus of the Cr-rich part of the binary Cu-Cr system, we used the electromagnetic levitation-based containerless solidification in combination with contactless pyrometry for temperature measurements as well as the use of a high purity protective atmosphere and high purity raw materials. In such a way, contamination of crucibles, thermocouples and protective atmosphere to the samples can be avoided. We found that the binary Cu-Cr phase diagram is monotecti-type, rather than eutectic-type. The liquidus of Cu-Cr alloys with high Cr contents was optimized and calculated by the subregular solution model. The calculated liquid interaction can be given by Ωl=(86088-10674XCr)-T(34.39-17.05XCr). The stable liquid miscibility gap ranges from 53at.% to 84at.% Cr at an invariant monotectic temperature of 2023±20K. The computed critical point corresponging to the closure of miscibility gap occurs at 2118.5K and XCr=0.6964. We have successfully prepared the rapidly solidified Cu-Cr alloys with large-scope of Cr content by splat-quenching. When the Cr content reaches 15at.%, the metastable liquid phase separation occurred in splat-quenched Cu-Cr melt droplets. In addition, the size of Cr-rich spheres from liquid phase separation increased as the Cr content increased. As the Cr increased to 65at.%, the microstructure of both the large Cr-rich spheres and the large Cr-rich bandings occurred. At the same time, it has been observed that lots of the Cu-rich phase existed in the splat-quenched Cu-Cr melt droplets with high Cr content, which can be attributed to the second phase separation. Because of the strong reaction of Cu-Cr alloys with the crucible materials at the high temperature, both the inducing melted and the melt-spun Cu-Cr alloys were contaminated, which clarified the arguments beween Müller and Li. Liquid phase separation occurred in the inducing melted alloys with the Cr concentrations more than 40at.%, which might be attributed to the reactant particles promoting the liquid phase separation. Liquid phase separation also occurred in the melt-spun Cu71Cr29 and Cu45Cr55 alloys. With increasing the wheel speed, the size of the Cr-rich spheroids was reduced significantly. The microhardness increased obviously, which was attributed to the refined microstructure and the supersaturated solid solutions. Liquid phase separation occurred in the arc melted Cu-Cr alloys with the Cr concentrations up to 45at.%, which was ascribed to the rapid solidification. Contrary to the non-homogeneous microstructure of the arc melted Cu-Cr alloys, the electromagnetic levitation melted Cu-Cr alloys showed the homogenous microstructure for the strong convection of the electromagnetic stirring.
页数123
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17119
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
周志明. Cu-Cr合金的高温相平衡及凝固行为研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[周志明]的文章
百度学术
百度学术中相似的文章
[周志明]的文章
必应学术
必应学术中相似的文章
[周志明]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。