IMR OpenIR
2:14:1型稀土过渡金属间化合物粉体和双相多层膜的结构和磁性及MnAs基材料磁制冷性能的研究
其他题名The structures and magnetic properties of 2:14:1–type RT-TM intermetallic powders and double-phased multilayer films and investigations of the magneto-caloric effects in MnAs-based intermetallics
崔伟斌
学位类型博士
导师刘伟
2009-05-23
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词机械合金化 交换耦合 非磁间隔层 矫顽力机制 场至相变 磁卡效应
摘要我们采用机械合金化、真空退火的方法制备了 NdFeC和NdCoBC等磁体。采用磁控溅射制备了NdFeB/α-Fe多层膜。采用机械合金化法制备了(Mn, Al)As、MnAsCx和Mn(As, Si)化合物。通过X射线衍射、透射电镜(TEM) 、X光电子谱 (XPS)、原子力显微镜(AFM)和磁力显微镜(MFM)等探测样品的表面、界面及微观结构。用超导量子干涉仪(SQUID)测量样品的磁性能和磁卡效应。 在Nd16Fe84-xCx (6 ≤ x ≤ 12)磁体中,我们发现采用二次机械合金化可以明显提高硬磁主相比例,提高矫顽力从而改善磁体性能。在x = 8时,得到的矫顽力最大为1.32 T。 采用机械合金化制备Nd16Co76B8-xCx (0 ≤ x ≤ 8)及其氢化物在0 ≤ x ≤ 7区间内能够形成2:14:1相。研究发现,2:14:1相及其氢化物中,C取代B可以增强Nd磁性亚晶格的各向异性,相应的自旋再取向温度也逐渐升高。C取代B和加入H间隙原子对Nd磁晶格各向异性的影响是相互独立的。 采用磁控溅射的方法,我们在加热的Si基片上采用Mo为间隔层制备了取向的NdFeB/α-Fe复合多层膜。实验发现,采用Mo作为间隔层可以有效阻止高温时的界面扩散,对实现软硬磁相的复合非常关键。在复合薄膜中获得矫顽力和最大磁能积分别为0.8 T和200kJ/m3(25 MGOe)。由于在间隔层的存在时依然能够发生软硬磁间的交换耦合证明这种交换耦合并非是最近邻相互作用。 随后,我们在不同Mo间隔层厚度和NdFeB周期数结构下,研究了薄膜的矫顽力机制。实验发现,在不同Mo间隔层厚度下薄膜的矫顽力控制机制为反磁化形核;随薄膜周期数的增多,由于引入的界面增多,矫顽力机制随薄膜周期数增多转变为畴壁钉扎机制,钉扎畴壁的是薄非均匀区。 由于非磁性间隔层的存在会影响软硬磁间的交换耦合,我们研究了不同间隔层厚度下取向复合薄膜中有效临界相关长度。实验发现,这种有效临界相关长度随间隔层的厚度表现出非线性关系。这种非线性关系不随间隔层材料、测量方向和温度、硬磁相材料和厚度发生变化,只是在相应的间隔层厚度情况下,有效临界相关长度随硬磁相在低温下磁晶各向异性增强、计入形状各向异性或硬磁相厚度降低。 采用机械合金化法可以将原本耗时复杂并且容易氧化的烧结过程简化。采用Al少量替代Mn时,外场变化为5 T时磁熵变最大值从MnAs基体237 K时的48.2 J kg-1K-1提高到Al含量为0.015时的65.7 J kg-1K-1,对应的居里温度为271 K。而进一步提高Al含量,磁熵大幅降低。相应地,在5 T和2 T下,磁制冷效率也从MnAs的340 J kg-1和130 J Kg-1升至到Mn0.985Al0.015As的420 Jkg-1 和160 Jkg-1。 由于MnAs晶格对晶格应变非常敏感,造成晶格应变,除了替代还可以用间隙原子。随间隙C原子在MnAs中含量从0.015增至0.05,居里温度逐渐下降。5 T外场变化下在MnAsC0.03中获得该体系中的最大磁熵变为56.3 Jkg-1K-1,磁制冷能力为460 Jkg-1。这表明,C的间隙原子效应也可以用来调节MnAs变磁转变和磁熵变。 Si替代As对消除MnAs体系中的磁滞非常有利。在MnAs1-xSix (x = 0.03, 0.06, 0.09)中,当Si含量超过6 %时体系的热滞基本消除。随Si替代增多,体系的居里温度升高至室温附近。5 T下最大磁熵变也减小至10 – 15 Jkg-1K-1之间,并且对Si含量的进一步增高不敏感。根据主动性制冷要求,我们通过合理调节MnAs0.97Si0.03、MnAs0.94Si0.06和MnAs0.91Si0.09三种组元的相对含量,在MnAs1-xSix中5 T外场变化下,我们获得了宽达30 – 35 K左右的制冷温区,在此区间内磁熵变保持在5 – 6 Jkg-1K-1之间。
其他摘要Nd-Fe-C and Nd-Co-B-C alloys were prepared by mechanical-alloying plus annealing in vacuum. NdFeB/α-Fe multilayer films were prepared by magneto-sputtering. (Mn, Al)As, MnAsCx and Mn(As, Si) alloys were prepared by mechanical-alloying and vacuum annealing. Surface, interface and microstructure were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), atomic force microscope (AFM) and magnetic force microscopy (MFM). Magnetic properties were characterized by superconducting quantum interference device (SQUID). In Nd16Fe84-xCx (6 ≤ x ≤ 12) alloys, it is found that a re-milling process can significantly increase the 2:14:1-type hard-magnetic phase ratio and their coercivities. The largest coercivity is obtained at x = 8. 2:14:1-type structure can be formed when x ≤ 7 in mechanical-alloyed Nd16Co76B8-xCx and their hydrides. The Nd-sublattice magnetocrystalline anisotropy of 2:14:1-type phases and their hydrides are found to be much enhanced by C substitution for B, consequently leading to higher spin-reorientation temperature. The effects of C substitution for B and hydrogen interstitial on the magnetocrystalline anisotropy of the Nd-sublattice are independent. Textured NdFeB/α-Fe coupled multilayer films are prepared by depositing onto heated Si substrates with Mo spacer-layers. It is found that interfacial interdifussion can be effectively inhibited by Mo spacer-layer, which is important to realize the textured structure in double-phased films. The maximum values for coercivity and maximum energy product are 0.8 T and 200kJ/m3(25 MGOe) respectively. Due to the existence of spacer-layer, the exchange-coupling between soft- and hard-magnetic phases is proved to be indirect. Coercivity mechanism in multilayer films with different thickness of Mo spacer- layer and repeats of NdFeB layers is investigated. It is found that reverse-domain nucleation is dominated in multilayer films with different thickness of Mo spacer- layer. With increased repeats, more interfaces leads to domain-pinning as the dominating mechanism. The pinning centers are the thin inhomogeneous regions. The effects of non-magnetic spacer-layer on the exchange-coupling between soft- and hard-magnetic phases are investigated. The effective critical-correlation length shows a non-linear dependence on the thickness of effective correlation length, independent with spacer-layer materials, direction of applied field, measuring temperature, hard-magnetic materials and thickness. Under certain thickness of spacer-layer, the values of effective critical-correlation length are decreased, due to the enhanced magnetocrystalline anisotropy, shape anisotropy or the reduced thickness of hard-magnetic phases. Time-consuming sintering in the preparation of MnAs alloys can be simplified by mechanical-alloying. After 1.5 % Al substitution for Mn, the maximum of magnetic entropy change is increased from 48.2 Jkg-1K-1 to 65.7 J kg-1K-1. And the Curie temperature in Mn0.985Al0.015As is 271 K. With increasing Al content to 3%, magnetic entropy change is greatly lowered. Under the magnetic field change of 5 T and 2 T, the refrigeration capacities are increased from 340 J kg-1 and 130 J kg-1 in MnAs to 420 J kg-1 and 160 J kg-1. Due to the sensitivity of MnAs lattice to the pressure, the lattice strains can also be induced by the interstitial atoms. The Curie temperature gradually decreases with more interstitial carbon contents from 0.015 to 0.05. The maximum of entropy change and the magnetic refrigeration capacity for the field change of 5 T are 56.3 Jkg-1K-1 and 460 Jkg-1 in MnAsC0.03, indicating that interstitial effect can also be used to tune the MnAs metamagnetic transition and magneto-caloric effect. Si substitution for As is beneficial to eliminate the thermal hysteresis when silicon substitution content is larger than 6%. With increasing Si substitution, the Curie temperature is correspondingly shifted to near room temperature. The maximum entropy change for a field change of 5 T is also decreased to be within 10 – 15 J kg-1K-1, which is insensitive to more silicon content. According to the requirement of active refrigeration, after adjusting the ratio of MnAs0.97Si0.03、MnAs0.94Si0.06 and MnAs0.91Si0.09, the refrigeration region as wide as 30 – 35 K and entropy change of 5 – 6 Jkg-1K-1 are obtained under a field change of 5 T.
页数132
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17123
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
崔伟斌. 2:14:1型稀土过渡金属间化合物粉体和双相多层膜的结构和磁性及MnAs基材料磁制冷性能的研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[崔伟斌]的文章
百度学术
百度学术中相似的文章
[崔伟斌]的文章
必应学术
必应学术中相似的文章
[崔伟斌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。