IMR OpenIR
Cu-Hf-Al块体金属玻璃的形成能力与力学性能
其他题名Formability and Mechanical Properties of Cu-Hf-Al Bulk Metallic Glasses
贾鹏
学位类型博士
导师马恩
2009-05-20
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词金属玻璃 玻璃形成能力 压缩性能 缺口韧性 弹性常数 Cu合金
摘要金属玻璃(MG)中的原子排列具有长程无序、短程有序的结构特征,较之于传统晶体材料具有高强度、高硬度、高弹性极限、高比强度、耐腐蚀等优异的性能。目前制约块体金属玻璃(BMG)应用的主要问题集中在两个方面:一是合金的玻璃形成能力(GFA)限制了BMG的尺寸,二是BMG的脆性。在现已发现的BMG中,Cu基BMG具有高强度、低成本的优势。本工作系统地研究了Cu–Hf–Al三元合金的GFA以及合金成分对压缩塑性变形能力和韧性等的影响,为发现高GFA兼有良好韧性的BMG奠定基础。主要内容及结论如下: 1. 在Cu−Hf二元系中的(L→Cu10Hf7+CuHf2)共晶点附近,Cu100-xHfx(44≤x≤46)合金可在铜模浇铸条件下形成直径为1 mm的BMG。这些BMG的过冷液态温度区间约为55 K。在Cu−Hf−Al三元系中,以1 at.%成分间隔的系统研究表明, GFA最佳的合金为Cu49Hf42Al9,形成BMG的临界直径可达到10 mm,过冷液态温度区间为83 K。在相图上,形成BMG的成分区域位于由CuHfAl、Cu10Hf7和CuHf2三个晶体相围成的成分三角之内,与L→CuHfAl+Cu10Hf7+CuHf2三相共晶反应相关联。三相共晶反应的不变温度约为1206 K,相对于L→Cu10Hf7+CuHf2共晶反应温度降低47 K,表现出“深共晶”特征。 2. Cu49Hf42Al9合金的脆度系数D*为16.8,明显高于Cu55Hf45二元合金(D*=8.6),表明添加Al元素具有提高强液体性质的作用。合金的高GFA与其强液体行为相关联。采用综合考虑热力学和动力学因素评价GFA的参数F1,计算得到Cu55Hf45二元合金和Cu49Hf42Al9三元合金的F1参数分别为0.35和0.50。对一些典型BMG的比较发现,相对于单一使用约化玻璃转变温度Trg或液体的脆度系数D*,F1参数能够更好地反映合金的GFA。 3. 随着Hf含量的增加,Cu91-xHfxAl9(40≤x≤46)系列BMG的玻璃转变温度(Tg)和剪切模量(μ)均呈线性下降趋势,Tg从x=40的782 K降低到x=46的774 K, 对应的μ从43.0 GPa降低到41.3 GPa,但泊松比(v)变化不明显,介于0.351~0.355之间。高Hf含量的 Cu45Hf46Al9(C2)BMG塑性变形能力优于低Hf含量的Cu49Hf42Al9(C1)BMG。这与C2具有更低的Tg和μ是一致的,但对v的依赖性不明显。 4. 不同Hf含量的两种铸态BMG压缩屈服强度差别不大,分别为2210~2470 MPa和2200~2440 MPa。对两种BMG屈服强度分散性的Weibull统计表明,C1和C2 BMG的Weibull模数分别为40和53,塑性较好的C2 BMG的屈服强度比C1的分散性更小。 5. 对几种GFA较强的铜基BMG缺口韧性(KQ)的研究表明,这些金属玻璃的韧性大致上可划分为两类:分别为KQ约38 MPam1/2的“脆性”BMG和KQ约60 MPam1/2的“韧性”BMG。另外,Cu基金属玻璃的韧性介于脆性的Fe基金属玻璃和韧性的Zr基金属玻璃之间。在Cu−Zr−Ti(Al) 三元合金的基础上,添加第四组元Ag/Y,尽管可以显著提高GFA,但导致BMG的韧性明显下降。在所研究的Cu基BMG中,Cu49Hf42Al9合金兼有较高的GFA和韧性。 6. Cu基金属玻璃的韧性对v没有明显的依赖关系:“脆性”和“韧性”两组BMG的n分别在0.351~0.377和0.364~0.373之间,不存在脆性向韧性转变的临界v值。Cu基BMG的韧性随μ或者Tg的升高而提高,μ<34 GPa或Tg<700 K的BMG表现为“脆性”。另外,不同于多晶体金属材料,Cu基BMG的韧性随着强度的提高而提高。
其他摘要In contrast to conventional polycrystalline metals, metallic glasses (MG) have the unique atomic strustrue with short-range order and no long-range order,which leads to their high strength, hardness, elastic limitation, specific strength as well as good corrosition resitance. However, the glass-forming ability (GFA) and macroscopic plasticity of bulk metallic glasses (BMGs) are two main issues to inhibit their largely application. Among the BMG family, Cu-based BMGs exhibit higher strength while lower cost. In this work, the GFA, compressive property and toughness for Cu–Hf–Al ternary metallic glasses were systematically studied. The alloy with higher GFA as well as higher toughness was developed. The major contents and conclusions are shown as following: 1. In the Cu-Hf binary system, Cu100-xHfx (44≤x≤46) compositions near the (L→Cu10Hf7+CuHf2) eutectic exhibit BMG formability with a critical diameter of 1 mm, together with a wide supercooled liquid region (DTx) of about 55 K. By incorporating the third element Al in the binary base system, the relevant eutectic translates from binary to ternary (L→Cu10Hf7+CuHf2+CuHfAl), resulting in significant stabilization of the liquid as indicated by a drop of 47 K for the eutectic temperature with respect to the Al-free binary. The GFA of the Cu-Hf-Al ternary alloy dramatically increases and the formation of centimeter-scale BMG at an optimized composition Cu49Hf42Al9 (DTx=83 K). 2. Improvement of the GFA from Cu-Hf binary to the Al-incorporated ternary is also consistent with the observation that the liquid becomes “stronger”, as evidenced by an increase of the fragility parameter, D*, from 8.6 for Cu55Hf45 up to 16.8 for Cu49Hf42Al9. The combination of the thermodynamic stabilization and slowing down of kinetics leads to a pronounced increase of the F1 parameter, from 0.35 for Cu55Hf45 to 0.5 for Cu49Hf42Al9, respectively. In comparison to the reduced glass transition temperature (Trg) or fragility parameter (D*), F1 can effectively reflect the GFA of BMGs. 3. Along Cu91-xHfxAl9 (40≤x≤46) series alloys, the glass transition temperature (Tg) and shear modulus (μ) decrease linearly with Hf content increasing, from 782 K to 774 K, 43.0 GPa to 41.3 GPa, respectively. While the Poisson’s ratios (v) keep constant within the test error, from 0.351 to 0.355. Contribute to its lower μ and Tg, the BMG Cu49Hf42Al9 (C1) with high Hf content shows higher malleability than Cu45Hf46Al9 (C2) under compression test. While n does not play an important role on the higher malleability of BMG C2. 4. BMG C1 and C2 show similar yield stress and strength scatter within the range of 2210~2470 MPa and 2200~2440 MPa, respectively. Weibull statistics is employed to describe their strength distribution. BMG C2 shows higher Weibull modulus (m=53) compared to BMG C1 (m=40) implying more uniform strength distribution. 5. In terms of the notch toughness, Cu-based BMGs with relatively higher GFA are classified into two groups, with KQ=60 MPam1/2 and KQ=38 MPam1/2, respectively, within the range of the brittle Fe-based BMGs and the tougher Zr-based BMGs. The Y/Ag incorporation into the ternary Cu-Zr-Ti(Al) based alloys enhances the GFA, while the toughness is significantly degraded. Among these BMGs, Cu49Hf42Al9 exhibits the best combination of higher GFA and toughness. 6. In contrast to the v criterion proposed before, the toughness of Cu-based BMGs does not show obvious dependence onn, which are within the range of 0.351~0.377 and 0.364~0.373, for “brittle”and “ductile” BMGs, respectively. The critical n value from britlle to ductile BMGs does not exihit here. However, the toughness increases with the increasement of Tg or μ: the BMGs with μ<34 GPa or Tg<700 K exhibit britlle behavior. Different with the polycrystalline metals, the toughness of Cu-based BMGs increases acomponying with the increasement of strength.
页数130
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17132
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
贾鹏. Cu-Hf-Al块体金属玻璃的形成能力与力学性能[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[贾鹏]的文章
百度学术
百度学术中相似的文章
[贾鹏]的文章
必应学术
必应学术中相似的文章
[贾鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。