IMR OpenIR
偏晶合金定向凝固过程中组织演变机理研究
其他题名Study of the Mechanism of the Microstructure Evolution in Directionally Solidified Monotectic Alloys
李海丽
学位类型博士
导师赵九洲
2009-05-21
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词偏晶合金 定向凝固 液-液相变 组织演变 模拟
摘要偏晶合金十分广泛,如果它们能形成弥散相均匀分布于基体的组织,则其中许多具有优异的特性和很重要的工业用途。但由于该类合金凝固时存在液-液相变过程,易形成两相分离组织,严重限制了它们的制备和应用,也为其凝固过程研究带来很大困难。偏晶合金凝固过程中组织演变的机理研究是研发该类合金制备技术的基础,其研究具有重要的科学与实际意义。本文选择工业上具有广泛应用前景的Al-Pb偏晶合金作为研究对象,采用实验与数值模拟相结合的方法,研究了偏晶合金定向凝固过程中组织演变规律及影响因素,具体如下: (1) 建立了偏晶合金定向凝固条件下固/液界面前沿熔体内的流动模型,进而,在考虑扩散传输、对流传输及弥散相液滴迁移传输共同作用下,给出了凝固过程中试样的浓度场和温度场控制方程;建立了偏晶合金液-液相变的动力学模型,模型中考虑了基体熔体对流、弥散相液滴形核、扩散长大、Stokes运动和Marangoni 迁移、液滴间碰撞凝并等因素的共同影响。研究结果表明:基于熔体流动、传热、传质和液-液相变相耦合所建立的理论模型可准确描述偏晶合金定向凝固过程中的组织演变,为偏晶合金工业生产提供一定的理论指导。 (2) 对Al-Pb偏晶合金开展了快速定向凝固实验,考察了合金成分和凝固速度对组 织演变的影响。研究表明:凝固样品中弥散相粒子尺寸随着凝固速度的增加而降低,随着Pb含量的增高而增大。 (3) 模拟分析了实际快速定向凝固条件下偏晶合金的组织演变过程,考察了合金成分、凝固速度和熔炼温度对合金组织演变的影响。结果表明:在给定合金成分的条件下,凝固速度越大、熔炼温度越高,凝固界面前沿弥散相液滴的形核位置越靠近凝固界面,弥散相液滴形核率越大、平均半径越小;在给定凝固速度和熔炼温度条件下,合金的Pb含量越高,凝固界面前沿弥散相液滴的形核位置越远离凝固界面,弥散相液滴的形核率越低,平均半径越大。 (4) 采用数值模拟的方法研究了基体熔体的对流运动对合金组织演变的影响。结果表明:对流改变了液-液相变的形核特性;对流致使凝固界面前沿的最高弥散相液滴数量密度、最大液滴半径和最高弥散相体积分数增加,促进宏观偏析组织的形成;对流使获得弥散相粒子均匀分布的偏晶合金凝固组织难度增加。 (5) 模拟研究了偏晶合金液-液相变过程中弥散相液滴形核位置和其它位置的熔体冷却速度对组织演变的影响,研究发现弥散相液滴形核时的熔体冷却速度对最终凝固组织起着决定性作用。 (6) 开展了恒定磁场作用下Al-Pb二元偏晶合金快速定向凝固实验研究,分析了恒定磁场下偏晶合金凝固组织的形成过程,考察了磁场强度和凝固速度对合金组织演变过程的影响。结果表明:磁场细化了弥散相粒子尺寸;随着凝固速度的增加,磁场对组织细化的作用逐渐减弱。 (7) 建立了恒定磁场作用下偏晶合金凝固过程中的两相流动模型,并将其与液-液相变动力学模型、温度场和浓度场控制方程进行了耦合求解,模拟分析了恒定磁场作用下Al-Pb合金定向凝固过程中的组织演变。结果表明:恒定磁场抑制了熔体对流,促使弥散相液滴的形核率、数量密度和体积分数沿试样径向分布均匀化,凝固界面前沿最大和平均弥散相液滴半径下降。
其他摘要Alloys with a miscibility gap in the liquid state are a broad kind of materials. Many of them are excellent candidates to be used in industry if a finely dispersed microstructure can be obtained. These alloys, however, have an essential drawback that just the miscibility gap, poses problems. When a homogeneous single phase liquid is cooled into the miscibility gap, it transforms into two liquids. Generally the liquid-liquid decomposition causes the formation of a microstructure with serious segregation. This makes not only the manufacture of monotectic alloys very difficult, but also the solidification process rather complex. The knowledge on the mechanism of the microstructure evolution is the prerequisite for the development of the manufacturing technique of the monotectic alloys. Its study has great science and practical significance. In this paper, the solidification behaviors of Al-Pb monotectic alloy, which has good potentials in the application of automotive industry, are investigated. A model is proposed to analyze the microstructure evolution during a cooling of immiscible alloys. The microstructure development in a directionally solidified Al-Pb alloy is analyzed in details. The main researches are summarized as follows: (1) A model is developed to describe the melt flow in front of the solidification interface in a monotectic alloy directionally solidified. The governing equations for the concentration field and temperature field during the solidification of the sample are given which take into account the common action of the diffusional transport, convective transport and the migration of the minority phase droplets. A model was developed to describe the kinetics of the liquid-liquid phase transformation in a monotectic alloy directionally solidified. The model takes into account the concurrent actions of the nucleation, diffusional growth, collision and coagulation of the minority phase droplets, spatial segregation of phases and fluid flow in the melt. The results show that the numerical model based on the melt flow, heat transport, solution transport and liquid-liquid phase transformation describes the microstructural development well and provide theoretical foundation for manufacturing production; (2) The directional solidification experiments have been carried out with Al-Pb alloys. The Pb content and solidification rate have great effect on the microstructure formation. The average size of the minority phase particles decreases with the increase of the solidification rate and increases with the increase of the Pb content; (3) The microstructure formation in a monotectic alloy solidified under the practical directional solidification conditions is calculated. The effects of the alloy composition, solidification rate and melting temperature on the microstructure formation are investigated. The numerical results demonstrate that for an alloy of given composition, the nucleation position moves towards the solidification interface, the nucleation rate increases and the average radius of the minority phase droplets decrease with the increase of the solidification velocity and the enhancement of the melting temperature. For a given solidification velocity and melting temperature, the nucleation position moves away from the solidification interface, the nucleation rate decreases and the average radius of the minority phase droplets increases with the increase of the Pb content; (4) The effect of the convections on the microstructure evolution has been calculated. The numerical results demonstrate that the convections have great effect on the nucleation of the minority phase droplets. A convective flow along moving direction of the sample causes an increase in the cooling rate and, therefore, an increase in the nucleation rate of the minority phase droplets. The convections enhance the maximums of the number density, average radius and volume fraction of the minority phase droplets in front of the solidification interface. It promotes the formation of the solidification microstructure with a serious macro-segregation. The convections make it more difficult to obtain a monotectic alloy with a well dispersed microstructure; (5) The effects of the cooling rate on the microstructure evolution during the nucleation period and growth stage of the minority phase droplets is investigated. The results demonstrate that the cooling rate during the nucleation period of the minority phase particles has an overwhelmingly strong effect on microstructure formation compared with the cooling rate after the nucleation period; (6) The directional solidification experiments have been carried out for Al-Pb alloys in a static magnetic field. The microstructure formation of the monotectic alloy in a static magnetic field has been analyzed. The magnetic field has great effect on the solidification of the monotectic alloys. The average radius of the minority phase particles decreases with the increase of the magnetic field strength. For a given alloy and magnetic field strength, the lower the solidification rate, the stronger the effect of the magnetic field on the solidification microstructure; (7) A model is developed describing the two-phase flow in front of the solidification interface when solidifying a monotectic alloy directionally. The microstructure evolution in a directionally solidified Al-Pb alloy in a magnetic field is investigated by solving together the controlling equations for the kinetic process of the phase transformation, the temperature field, the concentration field and flow field. The results demonstrate that the magnetic field affects the microstructure formation mainly through the suppression of convections. It causes a more uniform distribution of the nucleation rate and the number density of the minority phase droplets along the radial direction of sample. It also causes a decrease in the size of the maximum droplet in front of the solidification interface.
页数138
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17134
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
李海丽. 偏晶合金定向凝固过程中组织演变机理研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李海丽]的文章
百度学术
百度学术中相似的文章
[李海丽]的文章
必应学术
必应学术中相似的文章
[李海丽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。