IMR OpenIR
表面与均相掺杂氧化钛基光催化材料的设计、合成与光催化特性研究
其他题名Design, Synthesis and Photocatalytic Performance of Surface and Homogeneously Doped Titania Based Photocatalytic Materials
刘岗
学位类型博士
导师成会明
2009-05-27
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词光催化 氧化钛 纳米片 (001)晶面 掺杂
摘要光催化技术是利用太阳能的技术,对于可再生能源和环境的发展十分重要,其研发重点是探求高效光催化材料。掺杂对于拓展光催化材料的光谱响应范围和提高光催化效率是不可或缺的。然而,针对完整晶面的掺杂及掺杂剂组态与掺杂原子分布对光催化材料电子结构、表面结构的作用的研究相当匮乏,因此制约了高效光催化材料的设计与可控合成。本论文主要研究富含(001)高活性面锐钛矿二氧化钛与亚纳米厚氧化钛纳米片的掺杂、控制氧化钛基材料掺杂剂组态与分布及它们在发展高性能光催化材料中的作用。 提出“掺杂剂前驱体与氧化钛前驱体合二为一”的思路,以TiB2为前驱体,通过简单调整矿化剂离子如Cl-、SO42-与NO3-可得到形貌与晶型可控的二氧化钛同质异象体---亚微米双锥体锐钛矿相二氧化钛、纳米角构成的蒲公英状金红石相二氧化钛与近球形板钛矿相二氧化钛纳米颗粒;TiB2在HF溶液中水解后生成了含有氧空位、富含(001)晶面的锐钛矿二氧化钛,氧空位产生的表面重构可大幅提高光催化活性。以TiN 和TiS2为前驱体,在HF溶液中水解,分别合成出氮掺杂、硫掺杂富含(001)晶面的锐钛矿二氧化钛,具有可见光吸收和可见光光催化活性。 发现含有B-N键的锐钛矿二氧化钛表面结构可在两个方面促进光催化效率:i) B-N耦合所产生的部分填充电子态可提高可见光吸光率;ii) 通过局域化作用,B-N位作为反应“活性点”促进载流子的表面分离。另一方面,含有I-O-I和I-O-Ti键的锐钛矿二氧化钛的光吸收边可至800 nm,而且该二氧化钛在波长大于600 nm的光照下仍然可产生重要的光催化活性物种羟基自由基(•OH)。理论研究发现由于I-O排斥作用,掺杂碘趋于表面,表面碘掺杂不会改变锐钛矿二氧化钛的本征带隙,但碘的局域化电子态的占据和分布情况与碘组态密切相关,造成了碘掺杂二氧化钛更宽的光吸收边。同时由于局域应变能的释放,I-O-I&I-O-Ti键的共存会显著改变二氧化钛的表面结构。 与多数非金属表面掺杂二氧化钛仅在带隙中引入局域化能级而形成的可见光吸收肩膀不同,层状钛酸盐(Cs0.68Ti1.83O4-xNx 和H0.68Ti1.83O4-xNx)中的均相氮掺杂通过N 2p电子态将价带顶提高,减小带隙,产生带对带的可见光吸收边。可见光激发Cs0.68Ti1.83O4-xNx 和H0.68Ti1.83O4-xNx在新形成价带中的空穴具有强的氧化能力将OH-氧化成羟基自由基(•OH)。所得结果清楚地说明均相氮掺杂对实现层状钛酸盐的带对带可见光光激发的重要性,对均相掺杂带来电子结构变化的认识对于发展掺杂半导体光催化材料具有重要的意义。 通过剥离层状化合物,可获得厚度从亚纳米到纳米的半导体氧化物纳米片,剥离均相氮掺杂的层状H0.68Ti1.83O4-xNx得到了具有可见光响应的超薄Ti0.91O2-xNx纳米片,其厚度为0.75 nm。利用层层自组装的方法,可将Ti0.91O2-xNx纳米片组装成多层膜,具有可见光电解水的能力
其他摘要Photocatalysis is a promising catalytic process for solar energy utilization, which can underpin the development of critical renewable energy and environment technologies. The key of photocatalysis technology is to research and develop highly efficient photocatalytic materials under solar light irradiation. Doping is indispensible for extending light responsive range and improving photocatalysis efficiency of photocatalysts. However, the detailed investigation targeting on doping in well-defined crystal facets and the effects of dopant configurations and distribution on electronic structure and surface structure of materials is extremely rare, which thus restricts the design and controllable synthesis of highly efficient photocatalysts. This dissertation focuses on doping in anatase TiO2 crystals with dominant (001) facets and subnanometer titania nanosheets, controlling dopant configurations and distribution and their role in developing highly efficient titania based photocatalysts. A new route is designed to prepare phase-controllable TiO2, oxygen deficient anatase TiO2 with dominant (001) facets, and nitrogen/sulfur doped anatase TiO2 with dominant (001) facets. The key in this route is to employ crystal compounds (TiB2, TiN or TiS2) hard to dissolve where both Ti and dopants are containing in a single precursor for TiO2. By simply adjusting mineralizers such as Cl-、SO42- or NO3-, the phase tunable (rutile/anatase/brookite) titania with different morphologies (rutile nanocones, anatase bipyramids and brookite spherical nanoparticles) can be obtained. TiB2 hydrolyzing in HF solution can form oxygen deficient anatase TiO2 with dominant (001) facets, where surface reconstruction induced by oxygen vacancies can substantially enhance photoactivity. Nitrogen/sulfur doped anatase TiO2 with dominant (001) facets is prepared by employing TiN/TiS2 as precursor in HF solution under hydrothermal conditions. The developed nitrogen/sulfur doped TiO2 shows visible light absorption and corresponding visible light photoactivity. It is indicatively evidenced that the TiO2 surface structures containing B-N bonds can exhibit bifunctionality in promoting photocatalysis, 1) supplying partially occupied localized states attributed to B-N coupling with spectral distribution that is advantageous for enhancing visible light absorption as well as 2) acting as photocatalytic ‘hot sites’ to support localization and separation of charge carriers at the surface. On the other hand, surface iodine doped TiO2 with coexisting atomic configurations of iodine dopant, I-O-I and I-O-Ti structures, exhibits extended absorption edge up to 800 nm. Furthermore, photocatalytic activity investigations confirm the efficient generation of important oxidative species •OH radicals in photocatalysis oxidation processes beyond 600 nm. It is theoretically found that iodine atoms prefer to be doped within the surface due to the strong I-O repulsion. I-doping in surface leads to little change in its intrinsic bandgap, but the distribution and occupation of localized states of iodine strongly depends on the surface iodine configurations. The latter is responsible for the wider range visible light response exhibited in anatase TiO2 with the coexistence of I-O-I and I-O-Ti structures. The coexistence of I-O-I and I-O-Ti structures can distinctly change the surface structure due to the release of local strain energies. These results offer important implications for designing highly efficient photocatalysts based on co-doping strategies. In contrast to most nonmetal doped titania photocatalysts with some localized states in the intrinsic bandgap and small visible light absorption shoulders induced by inhomogeneous nitrogen doping near the particle surface, the homogenous substitution of O by N is realized in the whole particles of layered titanates. The resultant materials Cs0.68Ti1.83O4-xNx and H0.68Ti1.83O4-xNx exhibit extraordinary band-to-band excitation in the visible-light ranging up to blue light. The upward shift of valence band maximum by N 2p states is concluded as the cause of the band-to-band visible light excitation. The holes generated upon visible light excitation in the newly formed valence bands of Cs0.68Ti1.83O4-xNx and H0.68Ti1.83O4-xNx have strong oxidation ability in oxidizing OH- into active •OH radicals in photocatalysis. These findings are the clear evidence for the substantial role of homogenous nitrogen doping in obtaining band-to-band visible-light photon excitation in layered titanates. The new physical insights into the electronic structure of homogeneous substitutional N in layered titanates gained here may have important implications for developing other efficient visible light photocatalysts by nonmetal doping. Semiconducting metal oxide nanosheets (NSs) with extremely small thickness in subnano- to nanometer scale can be derived from delamination of layered compounds. By exfoliating layered H0.68Ti1.83O4-xNx with homogeneous nitrogen doping, visible light responsive Ti0.91O2-xNx superthin nanosheets with a thickness of 0.75 nm are developed. Furthermore, by using this new type of nanosheets as building blocks, multilayer thin films via the layer-by-layer (LBL) self-assembly exhibit the capability of photoelectrochemically splitting water as photoanodes under visible light irradiation.
页数175
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17139
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
刘岗. 表面与均相掺杂氧化钛基光催化材料的设计、合成与光催化特性研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘岗]的文章
百度学术
百度学术中相似的文章
[刘岗]的文章
必应学术
必应学术中相似的文章
[刘岗]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。