IMR OpenIR
Y-Si-O 系三元氧化物陶瓷的制备与性能
其他题名Preparation and property of Y-Si-O ternary oxide ceramics
孙子其
学位类型博士
导师李美栓
2009-05-25
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词Y2si2o7和y2sio5陶瓷 力学性能 热学性能 摩擦学性能 环境容忍性 注浆成型
摘要Y2Si2O7和Y2SiO5是Y2O3-SiO2体系中最重要的两种化合物。当利用Y2O3或Y2O3+SiO2为烧结助剂进行大块Si3N4陶瓷的制备时,Y2Si2O7和Y2SiO5常常作为晶界相存在于烧结后的Si3N4陶瓷中,这些晶界相在不同程度上影响着Si3N4的力学和电学性能。因此不论是从Y-Si-O系陶瓷本身还是从对Si3N4陶瓷性能的深入理解上,Y2Si2O7和Y2SiO5陶瓷都强烈的吸引着人们的注意力。 但是Y2Si2O7和Y2SiO5在Y2O3-SiO2相图中显示为一条直线,与两端的起始材料Y2O3和SiO2没有任何固溶度,这意味着合成纯净的Y-Si-O陶瓷需要对初始材料进行严格的化学剂量比控制;而且,Y-Si-O陶瓷本身也包含了复杂的多型相,比如到目前为止Y2Si2O7发现有多达7种多型(y、、、、、、),Y2SiO5也有两种多型(X1和X2),随着温度和压力的变化这些多型会相互转化。初始材料严格的化学剂量比和复杂的多型相转变是制备纯净单相Y2Si2O7和Y2SiO5的最大障碍。材料制备的困难阻碍了对这些材料的研究和探索。到目前为止,对Y2O3-SiO2系统中的三元化合物的研究主要集中在Y-Si-O多型相及其晶体结构确定方面。因此制备纯净单相的Y2Si2O7和Y2SiO5陶瓷粉末和致密块体材料是对该类材料研究取得进展的首要条件。 在本论文中,我们首先发展了一种新型的用于Y-Si-O陶瓷制备的方法-固相/液相反应合成法。以Y2O3和SiO2为原料,在原始粉末中通过加入LiYO2添加剂使其在合成过程中形成一种过渡液相。由于液相的形成促进了合成过程中物质的传递从而大大减小了原始粉末之间的反应温度并极大的提高了粉末间的反应速度。当从室温将Y2O3和SiO2原始粉末升温至1450 oC后,粉末之间没有发生任何化学反应,而Y2O3+SiO2+LiYO2粉末在相同条件煅烧后其主要产物即为-Y2Si2O7或Y2SiO5。通过加入LiYO2添加剂我们成功的制备了纯净单相的-Y2Si2O7和Y2SiO5陶瓷粉末和致密块体材料。 对于所合成的纯净单相的-Y2Si2O7和Y2SiO5陶瓷粉末和致密块体材料,首先利用傅立叶红外吸收谱、x射线荧光谱和拉曼谱对其晶体结构和晶体化学进行了系统的研究,然后利用万能力学试验机、热分析仪、激光热导仪、微摩擦试验机等设备研究了陶瓷材料的力学性能、热学性能、摩擦学性能和环境容忍性能。力学性能测试表明,-Y2Si2O7和Y2SiO5陶瓷都具有较低的剪切变形阻力,在微观形变上表现出一定的“微观塑性”,可以用硬质合金刀具加工,因此可以定义Y-Si-O陶瓷为一类 “可加工陶瓷”。-Y2Si2O7和Y2SiO5陶瓷具有独特的热学性能,如-Y2Si2O7陶瓷具有很低的热膨胀系数,CET = (3.90 ± 0.4)×10-6/K;和很低的热导率,当温度大于600 K时-Y2Si2O7的热导率小于3.0 W/mK。Y2SiO5的线膨胀系数为(8.36 ± 0.5)×10-6/K,热导率更是仅仅为1.34 W/m•K。Y-Si-O陶瓷具有优异的抗高温氧化和抗热腐蚀性能,因而Y-Si-O陶瓷是一类优良的多功能抗氧化/热障/环障涂层候选材料。 由于Y-Si-O陶瓷的优异性能使其在结构和功能上都有很广阔的应用前景,我们也以-Y2Si2O7为模型材料研究了陶瓷的湿化学成型技术。对水基和乙醇基-Y2Si2O7陶瓷浆料的制备和稳定性进行了研究。然后利用注浆成型的方法制备了Lotgering取向因子高达0.90的高择优取向、晶粒尺寸可控的-Y2Si2O7块体材料。这种具有高择优取向并且晶粒尺寸可控的陶瓷材料对于其以后的功能和结构性应用是十分有意义的。 总之,本论文系统研究了Y-Si-O系陶瓷的制备方法、结构、性能、成型方法以及可能的工程应用,特别是对于该陶瓷体系结构-性能之间关系的研究,对深入理解陶瓷材料可加工机理以及陶瓷材料的塑性机制有意义。
其他摘要Y2Si2O7 and Y2SiO5 ceramics are the two most important compounds in the system of Y2O3-SiO2. They are also frequently identified at the grain boundaries of Si3N4 when the sintering aid additives Y2O3 or Y2O3+SiO2 were used. It is proved that these intergranular phases play a crucial role in the mechanical and dielectric properties of Si3N4 ceramic. Therefore, Y2Si2O7 and Y2SiO5 ceramics are attractive not only on the scientific understand of these two novel ceramics but also on the application of Si3N4 ceramic. In the diagram of Y2O3-SiO2, Y2Si2O7 and Y2SiO5 compounds are presented as strait lines. It means that the synthesis of phase-pure materials is very difficult and a strict stoicheometric ratio for the starting powders is needed. Moreover, Y2Si2O7 and Y2SiO5 compounds possess very complex polymorphs: there are seven polymorphs (y,   and ) for Y2Si2O7 and two polymorphs (X1 and X2) for Y2SiO5. These polymorphs will transform from one to another with temperature during heating process. The strict stoicheometric ratio for the starting powders and complex polymorphs during heating encumber the preparation of phase-pure Y2Si2O7 and Y2SiO5 powders and bulk materials, and subsequently hinder the discovery and research on these two ceramics. In this dissertation, a novel solid-liquid reaction method was developed for the synthesis of Y-Si-O ceramics. The starting materials are Y2O3 and SiO2, with the addition of LiYO2 additive, a transit liquid-phase forms in the heating process. The formation of liquid phase significantly increases the transport of ions, and thus improves the reaction velocity and lowers the reaction temperature between Y2O3 and SiO2. For the powders without LiYO2 additive, no chemical reaction was detected in the sample during heating to 1450 oC, while a major phase of -Y2Si2O7 or Y2SiO5 was detected in the sample with 3 mol% LiYO2 addition under the same heating conditions. Via the solid-liquid reaction method, phase-pure -Y2Si2O7 and Y2SiO5 powers and fully dense bulk materials were obtained. Based on the purity -Y2Si2O7 and Y2SiO5 powders and fully dense bulk materials, we studied the crystal structure and crystal chemistry of -Y2Si2O7 and Y2SiO5 via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopies. The mechanical properties, tribological properties and environmental durability of -Y2Si2O7 and Y2SiO5 were also investigated. The mechanical properties of -Y2Si2O7 and Y2SiO5 demonstrated that these ceramics have low shear-deformation resistance and possess the ability of “microductility”, and thus can be machined readily by conventional cemented carbide tools. Therefore, Y-Si-O ceramics are defined to be a kind of “machinable ceramics”. From the perspective of thermal properties, -Y2Si2O7 has a very low thermal expansion coefficient (3.90×10-6/K) and a low thermal conductivity (< 3.0 W/mK above 600 K), and Y2SiO5 has thermal expansion coefficient of 8.36 ×10-6/K as well as a thermal conductivity of 1.34 W/m•K. Moreover, Y-Si-O ceramics have been proved that they present excellent resistance to hot-corrosion environments. It is concluded that Y-Si-O ceramics are promising candidates for oxidation-resistance/thermal barrier/environmental barrier coatings. Attributing to the unique properties, Y-Si-O ceramics are anticipated to be applied as both structural and functional materials. Thus, the wet-chemistry forming technique was investigated using -Y2Si2O7 as model material. Based on the well-dispersed aqueous-based and ethanol-based suspensions, highly textured (Lotgering factor up to 0.90) -Y2Si2O7 bulk materials with a controllable grain size were prepared via slip casting in a 12 T strong magnetic field and the following two-step sintering method. A material with a tailored microstructure is useful for applications taking advantage of its grain-size- or preferred-orientation-dependant mechanical or physical properties. In summary, this dissertation systematically investigated the preparation, microstructure, property, forming technique and the possible engineering applications of Y-Si-O ceramics. Based on the preparation-structure-property relationship of Y-Si-O ceramics, a guideline of machinability of ceramics by tailoring the crystal structure was proposed. The work of this dissertation benefits further developments and technological applications of Y-Si-O ceramics.
页数256
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17147
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
孙子其. Y-Si-O 系三元氧化物陶瓷的制备与性能[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙子其]的文章
百度学术
百度学术中相似的文章
[孙子其]的文章
必应学术
必应学术中相似的文章
[孙子其]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。