IMR OpenIR
脉冲磁场作用下镁合金的凝固组织细化研究
其他题名Research on the Refinement of Solidified Structure of Magnesium Alloys by Pulsed Magnetic Field
汪彬
学位类型博士
导师杨院生
2009-04-01
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词脉冲磁场 晶粒细化 计算模拟 纯镁 镁合金 凝固 组织 力学性能
摘要镁合金是目前广泛应用的工程结构材料中重量最轻、比强度最高的金属材料,近年来在航空工业、汽车工业和电子通讯工业中得到了广泛的应用。镁合金的凝固组织细化能够有效的改善合金的力学性能。近年来,在金属凝固过程中施加脉冲磁场作为一种控制材料凝固组织和性能的有效方法,得到了快速发展。本文研究了纯镁、AZ91D、AZ31和Mg-Gd-Y-Zr合金在未加和外加脉冲磁场条件下的凝固组织、晶粒尺寸、溶质元素分布、冷却曲线与力学性能,并对脉冲磁场进行数值模拟,对凝固组织细化和演变规律进行了探讨,研究结果如下: 采用ANSYS有限元软件对脉冲磁场进行电路-磁场-流场耦合模拟,并对影响脉冲磁场的电路参数进行分析,得出了脉冲磁场强度、电磁力和熔体流速随电压与时间的变化规律以及空间分布情况。设计和研制成功脉冲电磁场凝固装置,脉冲电压(U)和脉冲频率(w)分别可在一定范围内变化,产生任意脉磁参数U/w的脉冲电磁场。 在外加脉冲磁场作用下,纯镁及镁合金的凝固组织明显细化。纯镁、AZ91D、AZ31和Mg-Gd-Y-Zr合金的50mm铸锭晶粒分别细化到260m、104m、107m和37m。在外加脉冲磁场作用下,纯镁凝固组织由未加脉冲磁场条件下的完全柱状晶转变为等轴晶;AZ91D合金初生-Mg相的形貌由未加脉冲磁场条件下的树枝状转变为外加脉冲磁场条件下的蔷薇状或近球状;AZ31和Mg-Gd-Y-Zr合金在外加脉冲磁场作用下为细小、均一的等轴晶组织。AZ91D、AZ31、Mg-Gd-Y-Zr合金的的100mm铸锭在外加脉冲磁场作用下细化到110m、109m、47m,具有和50mm铸锭同样明显的凝固组织细化效果。脉冲磁场能够显著减轻铸锭的宏观偏析。最佳脉冲磁场工艺参数为5Hz、200V。 脉冲磁场可以明显改善镁及镁合金的力学性能。在最佳脉冲磁场工艺参数的脉冲磁场处理下,纯镁、AZ91D、AZ31合金的室温压缩强度和压缩应变分别提高到227MPa,362MPa,337MPa和33.2%,20.1%,31.6%。AZ91D、AZ31、Mg-Gd-Y-Zr合金的室温抗拉强度和延伸率分别提高到165.4MPa,181.6MPa,238.3MPa和3.26%,8.9%,1.91%。 脉冲磁场的施加会使合金熔体产生强制对流,从而碎化凝固过程中的粗大枝晶,使得熔体的温度场更为均匀。同时,脉冲磁场产生的磁压力在凝固过程中的固–液界面产生磁致过冷,使形核率增加,粗大树枝晶的生长得到抑制。另外,脉冲磁场产生的焦耳热效应使晶粒细化效果增强,并使枝晶球化。
其他摘要As structural materials magnesium alloys have a lot of advantages, such as low density, relatively high specific strength and specific elastic modules. They have been widely used in aeronautic, automotive, electronic industries in recent years. Applying pulsed magnetic field (abbreviated to PMF) during the solidification of metals is a new method developed in recent years. This dissertation investigates the effects of pulsed magnetic field on the solidified microstructures, average grain size, distribution of solute content, cooling curves and mechanical properties of pure Mg, AZ91D, AZ31 and Mg-Gd-Y-Zr magnesium alloys, and simulates the PMF processing, and discusses the microstructure refinement mechanism. The results are as follows: A mathematical model is built to describe the interaction of the circuit-magnetic-flow fields during solidification by means of ANSYS software. The pulsed electric circuit is first solved and then it is substituted into the magnetic field model. The fluid flow model is solved with the acquired electromagnetic force. The effects of pulse voltage and frequency on the current wave and the distribution of magnetic and the flow fields are numerically studied. The experimental results show that the remarkable microstructural refinement is achieved when the PMF is applied to the solidification of pure Mg, AZ91D, AZ31 and Mg-Gd-Y-Zr alloys. The average grain size of the 50mm ingots is refined to 260m, 104m, 107m and 37m respectively. Besides the grain refinement, the microstructures of pure Mg are considerably refined via columnar-to-equiaxed growth by the PMF; the morphology of the primary -Mg of AZ91D alloy is changed from dendritic to rosette, then to globular shape with changing the parameters of the PMF; the microstructures of AZ31 and Mg-Gd-Y-Zr alloys are also refined to whole fine equiaxed grains. The microstructure refinement effect is the same for the 100mm ingots, and the average grain size is refined to 110m, 104m, 109m and 47m for AZ91D, AZ31 and Mg-Gd-Y-Zr alloys respectively. The macrosegregation of solute elements of magnesium alloys is reduced by PMF treatment. The optimal processing parameters are 5Hz, 200V. The pure Mg and magnesium alloys produced with a 5Hz, 200V PMF treatment exhibit improved mechanical properties, such as the ultimate compressive strength at room temperature is increased to 227MPa, 362MPa, 337MPa and fracture strain to 33.2%, 20.1%, 31.6% for pure Mg, AZ91D and AZ31 alloys respectively. The tensile strength and elongation are increased to 165.4 MPa, 181.6 MPa, 238.3MPa and 3.26%, 8.9%, 1.91% for AZ91D, AZ31 and Mg-Gd-Y-Zr alloys respectively. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the solid/liquid interface by the magnetic pressure, which increases the nucleation rate and prohibits dendrite growth. In addition, primary -Mg dendrites break into fine crystals, resulting in a refined solidification structure of the magnesium alloys. The Joule heat effect induced in the melt also strengthens the grain refinement effect and the spheroidization of dendrite arms.
页数111
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17149
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
汪彬. 脉冲磁场作用下镁合金的凝固组织细化研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[汪彬]的文章
百度学术
百度学术中相似的文章
[汪彬]的文章
必应学术
必应学术中相似的文章
[汪彬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。