IMR OpenIR
两种含稀土镁合金的电化学腐蚀行为
其他题名Electrochemical Corrosion Behaviors of Two Magnesium Alloys Containing Rare Earth Elements
王赫男
学位类型博士
导师王福会
2009-05-31
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业腐蚀科学与防护★
关键词腐蚀 含稀土镁合金 微晶化 Cl-
摘要众所周知,镁合金耐蚀能力的提高是其能够得到广泛应用的前提条件。添加稀土元素是提高镁合金耐蚀性能的有效手段之一。前人在对镁合金高温氧化行为的研究中发现,稀土元素能够作为氧化物的形核物质促进氧化物在镁合金表面迅速形成,提高了镁合金的抗氧化能力。那么,在常温水溶液中稀土元素是否能够作为钝化膜的形核物质,促进钝化膜的形成,从而改善镁合金的耐蚀性能呢?为此,本论文首先从理论上系统研究了添加稀土元素Ce对AZ91镁合金表面钝化膜形成过程、稳定性及耐蚀性的影响,以便为稀土元素在镁合金中的应用提供更多的理论依据。研究获得的结果如下: 添加了1.5%Ce的AZ91合金在0.01MNaOH水溶液中的钝化行为研究结果表明,稀土元素Ce参与了AZ91合金钝化膜的形成,并以稀土氧化物(CeO2)的形式富集于钝化膜内层;在AZ91合金的钝化过程中,CeO2起了阻挡层的作用,改变了钝化膜的生长机制。但是,由于CeO2中的Ce4+取代了具有n型半导体特征的AZ91合金钝化膜中的Mg2+,致使钝化膜的载流子密度显著增加,膜导电性增强,膜内电化学反应容易,因此,该合金钝化膜的稳定性反而降低。 在含有Cl-的水溶液(pH=12)中的研究结果表明,稀土元素Ce降低了该合金的抗点蚀能力。这是由于稀土元素Ce的添加导致Cl-更容易在钝化膜外层吸附。Cl-吸附量的增加提高了介质对钝化膜的侵蚀能力,致使钝化膜的厚度变薄,在较低的阳极电位下就可以发生破裂。 虽然稀土元素的加入在一定程度上降低了AZ91合金钝化膜的稳定性和抗点蚀能力,但是由于稀土镁合金具有优良的机械性能和抗高温性能,在航空、航天领域中仍有着十分广阔的应用前景。因此,寻求改善现役稀土镁合金耐蚀性能的有效手段仍然是腐蚀领域的热点。前人研究结果表明,磁控溅射方法制备的微晶或纳米晶涂层虽然降低了镁合金钝化膜的稳定性,却能够提高其抗点蚀性能。为此,本文利用磁控溅射技术获得了微晶化GW102K(Mg-10Gd-2Y-0.5Zr)新型稀土镁合金的涂层,系统研究微晶化对该稀土镁合金钝化膜的稳定性和抗点蚀能力的影响,为探索提高新型稀土镁合金耐蚀性能的有效技术途径提供实验基础。 研究结果表明,在0.2MNa2SO4和0.6M(3.5wt%)NaCl中性水溶液中,微晶化致使GW102K稀土镁合金的自腐蚀电流密度增加,耐蚀性降低。机理研究表明,微晶化改变了GW102K合金的阴极反应历程,阴极反应过程中形成了镁的氢化物。由于微晶涂层表面存在大量晶界,有助于镁氢化物的形成,阴极反应变得容易,因此,阴极反应速度增加,并最终导致合金的自腐蚀速度增加,耐蚀性降低。 研究同时发现,微晶化促进了阳极腐蚀产物膜的形成,降低了阳极电流密度,增加了阳极腐蚀产物膜的稳定性,但并没有改变GW102K合金的阳极反应历程。其次,微晶涂层提供了较为均匀的组织结构,在其表面生成了成分更加均匀、结构更加致密的钝化膜,从而提高了GW102K合金的抗点蚀能力。进一步对腐蚀产物膜的AFM形貌观察和电子结构特征分析发现,随着腐蚀时间的增加,微晶涂层的腐蚀速率逐渐降低,抗点蚀能力逐渐提高。原因在于稀土元素Gd和Y的氢氧化物在腐蚀产物中富集和Cl-吸附导致腐蚀产物膜半导体类型的转变,提高了微晶涂层的耐蚀性能。
其他摘要It is well known that the extensive use of magnesium alloy is limited by its poor corrosion resistance. Alloying RE elements into magnesium alloy is one of useful methods to enhance its corrosion resistance. The previous results have revealed that RE elements could act as the nucleations to promote rapid formation of the oxides at high temperature, which significantly increases the oxidation resistance. However, whether RE elements still have effect as their performance at high temperature to improve the corrosion resistance of magnesium alloys in aqueous solution is not clear at present. Therefore, the influnence of RE elements on the formation, stability and pitting corrosion resistance of the passive film formed in alkaline system on AZ91 magnesium alloy was studied in detail from theoretical aspect in this work, which could help people understand the role of RE elements in the formation of passive film. The experimental results are following. The results of AZ91 alloy containing 1.5 % Ce in 0.01MNaOH system showed that RE element Ce participated in the formation of passive film and enriched as CeO2 in the inner layer. During the formation of passive film, CeO2 acted as a block layer, which changed the machnism of passivation. Ce4+ in CeO2 replaced Mg2+ in passive film with n-type semiconductive property. The replacement increased the carrier density and conductivity, which accelerated the electrochemical reactions. Therefore, the stability of passive film on AZ91 alloy containing 1.5 % Ce decreased. In the testing system containing Cl-, Ce decreased the pitting corrosion resistance of AZ91 alloy. Ce increased the adsorped concentration of Cl- on the outer layer of passive film. The adsorped Cl- promoted the break down of passive film, which decreased the thickness and enhanced the rupture of passive film under lower anodic potential. Although RE element decreases the pitting corrosion resistance of AZ91 magnesium alloys in some degree, the magnesium alloys have outstanding machnical and anti-oxidation property, which have extensive application in aviation and spaceflight in future. Therefore, the topic of looking for effective methods to increase the corrosion resistance still attracts more attention in corrosion field. Some studies suggest that nanocrystalline / microcrystalline coating by magnetron sputtering can significantly improve the pitting corrosion resistance. Therefore, GW102K (Mg-10Gd-2Y-0.5Zr)microcrystalline coating has been prepared by magnetron sputtering in this paper and the influence of microcrystallization on the stability and pitting corrosion resistance of passive film has been investigated, which will provide the experimental guidance to find effective techniques improving the corrosion resistance of magnesium alloys. The results in 0.2MNa2SO4 and 0.6M (3.5wt %) NaCl systems revealed that microcrystallization increased the corrosion current density and decreased the corrosion resistance. Microcrystallization changed the cathodal reactional mechanism and formed hydrides on the surface. Microcrystalline coating has a lot of grain boundaries, which improved the formation of hydrides and accelerated the cathodic reactions. Therefore, the acceleration of cathodic reactions leads to the increase of natural corrosion rate and the decrease of corrosion resistance. Meanwhile, microcrystallization improved the formation of anodic corrosion products and decreased the anodic current density, which increased the stability of corrosion products. On the other hand, the passive film with more uniform composition and more compact structure formed on microcrystalline coating increased the alloy’s pitting corrosion resistance. The further AFM observation and the analysis of carrier structure in passive film indicated that the corrosion rate of microcrystalline coating decreased with time, which means the pitting corrosion resistance gradually increased. The rich of hydroxides of RE elements Gd and Y in the corrosion products and adsorption of Cl- transformed the semiconductive type of corrosion products on microcrystalline coating, which lead to the increase of pitting corrosion resistance.
页数95
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17152
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
王赫男. 两种含稀土镁合金的电化学腐蚀行为[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王赫男]的文章
百度学术
百度学术中相似的文章
[王赫男]的文章
必应学术
必应学术中相似的文章
[王赫男]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。