IMR OpenIR
动态塑性变形法制备块体纳米黄铜的微观结构和力学性能研究
肖国华
学位类型博士
导师卢柯
2009-05-22
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词纳米结构材料 动态塑性变形 黄铜 孪晶 剪切带 加载方向 Zener-hollomon Parameter 再结晶 力学性能
摘要晶界和孪晶界都是能够有效阻碍位错运动的界面。研究发现,当尺寸减小到纳米量级后(小于100 nm),纳米晶粒和纳米孪晶都能够更加有效地强化材料。然而,目前通过严重塑性变形方法只能制备出亚微米量级的块体超细晶材料,而通过电沉积或磁控溅射等方法只能制备出纳米晶/孪晶薄膜样品,还没有合适的方法来制备真正意义上的致密、无污染的块体纳米结构材料,这直接限制了纳米材料的科学研究和应用。最近通过动态塑性变形技术(DPD)成功地在块体黄铜样品中引入了高密度的纳米孪晶和纳米晶粒,为我们深入系统地研究块体纳米结构材料的微观结构和力学性能提供了有利条件。 本工作利用液氮温度动态塑性变形技术(LNT-DPD)制备出了块体纳米结构黄铜样品,系统研究了其结构演化和力学性能,并研究了变形条件(加载方向的变化、应变速率和温度)对黄铜微观结构和力学性能的影响,最后对LNT-DPD黄铜退火后的微观结构和力学性能进行了研究,主要结果如下: 1. LNT-DPD黄铜的结构演化过程包括三个主要阶段: (ⅰ)第一阶段(应变量0-0.2),主要由平面列状位错来协调变形; (ⅱ)第二阶段(应变量0.2-0.8),变形孪晶开动并成为主要结构,孪晶厚度和孪晶层片间距都随着变形量的增加而有所减小,当应变量>1.2时,二者大小趋于一致,对应此时孪晶密度达到饱和; (ⅲ)第三阶段(应变量0.8-1.6),剪切带成为协调变形的主要结构,吞噬孪晶层片并随变形量的增加而不断拓宽,同时剪切带内部结构由延长状晶粒逐渐细化成等轴晶粒,最终形成由纳米孪晶束和纳米晶粒组成的混合结构,其中孪晶层片间距平均值在10-20 nm,纳米晶粒尺寸平均值在40-70 nm。 2. 对不同变形量的LNT-DPD黄铜进行室温单向拉伸实验。研究发现,随着变形量的增加,LNT-DPD黄铜的强度得到了大幅提升,屈服强度从80 MPa大幅提高到720 MPa;均匀延伸率则随变形量的增加不断减小,从50 %下降到2-3 %;块体样品中的孪晶强化遵循修正后的Hall-Petch关系,且孪晶强化在材料强化中占据主要地位;剪切带的出现削弱了孪晶强化,并给材料的塑性带来不利影响,导致均匀延伸率的急剧下降。 3. 通过一系列实验分别研究了加载方向的变化、应变速率和变形温度对黄铜微观结构和力学性能的影响,研究发现: (ⅰ)加载方向的变化使黄铜在重新加载后出现了暂时性的屈服强度下降和加工硬化率升高,这种暂时性的变化随着后续应变量的增加而逐渐消失,不会影响大变形量变形后黄铜的力学性能;加载方向的变化能够有效地开动多个孪晶系并促进孪晶交割结构的出现。 (ⅱ)应变速率和变形温度的影响可以用Zener-Hollomon(Z)指数进行综合评定。实验结果表明,各类样品的孪晶厚度、孪晶层片间距和纳米晶粒宽度都随着LnZ的增加而减小,屈服强度则随着LnZ的增加而增加。LNT-DPD变形由于其较高的应变速率和较低的变形温度而具备较大的Z指数(LnZ = 90),使得LNT-DPD黄铜样品具有较小的孪晶尺寸(11 nm,14 nm)、较小的晶粒尺寸(38 nm)和较高的屈服强度(720 MPa)。高的应变速率和低的变形温度可以有效地细化孪晶和晶粒尺寸,并带来材料屈服强度的相应提升。 4. 对单一孪晶结构 LNT-DPD_0.8黄铜样品和混合结构LNT-DPD_1.6黄铜样品进行等温退火,研究两类样品退火后的微观结构和力学性能。主要结果如下: (ⅰ)LNT-DPD_0.8样品热稳定性优于LNT-DPD_1.6样品,这是由于LNT-DPD_1.6样品中的大量纳米晶粒提高了样品的总储能,使得LNT-DPD_1.6样品具备更大的再结晶形核驱动力,从而能够在较低温度发生再结晶。 (ⅱ)LNT-DPD_0.8样品中的再结晶主要发生在孪晶区域,而LNT-DPD_1.6样品中的再结晶会优先发生在纳米晶区域,再结晶导致孪晶体积分数的减少,但并不改变残留孪晶的层片间距。 (ⅲ)随着退火时间的延长,LNT-DPD_0.8和LNT-DPD_1.6样品均出现了强度的下降和塑性的提高。LNT-DPD_0.8样品退火后的强度-塑性变化趋势与变形态As-DPD样品的趋势重合,这归因于二者结构组成上的相似性;在相同退火条件下,LNT-DPD_1.6样品比LNT-DPD_0.8样品具有更好的强度-塑性匹配,在相同的均匀延伸率下,LNT-DPD_1.6样品的屈服强度比LNT-DPD_0.8样品高100-200 MPa,这归因于LNT-DPD_1.6样品中层片间距更小的残留孪晶和尺寸更小的再结晶晶粒。
其他摘要Both grain boundary and twin boundary are interfaces that can effectively block dislocation motions. It has been found that when the grain/twin size decreases below 100 nm, the nanograins and nano-twins can strengthen materials more efficiently. However, the well-known methods of severe plastic deformation can only prepare bulk ultrafine-grained materials with grain sizes in the range of submicrometer, and the methods of electro-deposition or magnetron sputtering can only fabricate nano-grained/nano-twinned foil samples with very thin thickness. The proper method to fabricate real flaw-free and contamination-free bulk nanostructured (NS) samples has not been developed yet, which directly limits the industrial utilization of bulk NS materials. Recently, through the method of dynamic plastic deformation (DPD), high-density nano-twins and nanograins are successfully induced into bulk brass sample, which paves the way for the systematic and thorough researches on the microstructures and mechanical properties of bulk NS materials. In this work, bulk NS brass samples were fabricated through dynamic plastic deformation at liquid nitrogen temperature (LNT-DPD). Firstly, the microstructural evolution and mechanical properties of LNT-DPD brass samples were investigated systematically. Secondly, the influences of deformation conditions (strain path change, strain rate and temperature) on the microstructures and mechanical properties were studied. Finally, the microstructures and mechanical properties of annealed LNT-DPD brass samples were investigated. The main results are as follows: 1. The microstructural evolution of LNT-DPD brass can be classified into three stages: (i) Stage I (0-0.2). The microstructure is characterized by planar dislocations. (ii) Stage II (0.2-0.8). The major deformation mode is deformation twinning. Both the twin layer thickness and twin boundary spacing decrease with the increasing strain. The value is nearly equal to the value when strain > 1.2, which corresponds to the saturated state of twin density. (iii) Stage III (0.8-1.6). The major deformation mode is shear banding. Shear bands swallow twin lamellae and widen with the increasing strain, and meanwhile the structure inside shear bands develops from elongated grains into equiaxed grains. The ultimate microstructure is composed of nano-scale twin bundles and nanograins. The average twin boundary spacing is in the range of 10-20 nm and the average nanograin size is in the range of 40-70 nm. 2. Uniaxial tensile tests were conducted on the LNT-DPD brass samples with different strains. With the increasing strain, the yield strength increased significantly from 80 MPa to 720 MPa, while the uniform elongation decreased from 50 % to 2-3 %. The twin strengthening in bulk sample follows the modified Hall-Petch relationship, and plays a dominant role in the total strengthening. The occurrence of shear bands weakens the twin strengthening and exerts bad influences on the ductility, leading to a catastrophic decrease of uniform elongation. 3. A series of investigations were conducted on the influences of strain path change, strain rate and temperature on the microstructures and mechanical properties of deformed brass. The results are as follows: (i) The strain path change leads to a transient stage during which strength decreases and strain hardening rate increases when brass samples are reloaded. This transient stage diminishes gradually with the subsequent increasing strain, and has little influences on the mechanical properties of brass samples with large deformation strain. The strain path change can effectively activate more twin systems and accelerate the formation of twin intersections. (ii) The influences of strain rate and temperature can be integrated and evaluated by Zener-Hollomon parameter (Z). It is shown that the twin layer thickness, twin boundary spacing and nanograin width decrease with the increasing LnZ, and the yield strength increases with the increasing LnZ. Compared to other samples, LNT-DPD sample has smaller twin size (11 nm, 14 nm), smaller grain size (38 nm) and higher yield strength (720 MPa), which can be attributed to the larger Z (LnZ = 90) due to higher strain rate and lower temperature. High strain rate and low temperature can refine the structural size efficiently and enhance the yield strength correspondingly. 4. Isothermal annealing was conducted on two kinds of LNT-DPD samples, LNT-DPD_0.8 and LNT-DPD_1.6 sample, prepared at strain = 0.8 and 1.6 respectively. The microstructures and mechanical properties after annealing were investigated. The results are as follows: (i) The thermal stability of LNT-DPD_0.8 sample is better than that of LNT-DPD_1.6 sample. This is because a large number of nanograins elevate the total energy level of LNT-DPD_1.6 sample, leading to larger nucleation driving force and lower static recrystallization (SRX) temperature. (ii) The SRX happens primarily in the twinned regions in LNT-DPD_0.8 sample, while happens preferentially in the nano-grained regions in LNT-DPD_1.6 sample. The SRX leads to the decrease of volume fractions of twin lamellae but little change of twin boundary spacing. (iii) With the increasing annealing time, the strength decreases and ductility increases for both kinds of LNT-DPD samples. The strength-ductility trends of annealed LNT-DPD_0.8 samples and as-deformed LNT-DPD samples are overlapped, which can be attributed to their similar microstructural components. Under the same annealing conditions, LNT-DPD_1.6 samples have better strength-ductility combination compared with LNT-DPD_0.8 samples. With the same uniform elongation, the yield strength of annealed LNT-DPD_1.6 samples is higher than that of annealed LNT-DPD_0.8 samples by 100200 MPa, which is attributed to thinner twin lamellas and smaller SRX grains.
页数123
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17156
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
肖国华. 动态塑性变形法制备块体纳米黄铜的微观结构和力学性能研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[肖国华]的文章
百度学术
百度学术中相似的文章
[肖国华]的文章
必应学术
必应学术中相似的文章
[肖国华]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。