IMR OpenIR
Mg-Zn-Y-Zr系镁合金的力学行为研究及其微观组织表征
其他题名Mechanical Behavior Investigation and Microstructure Characterization of Mg-Zn-Y-Zr Mg Alloys
许道奎
学位类型博士
导师韩恩厚
2008-05-29
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词Mg-zn-y-zr镁合金 热处理 挤压过程 准晶相i-phase W-phase 晶体学织构 力学各向异性 微观组织 析出相 疲劳裂纹扩展(fcp) 超高周疲劳 S-n曲线 疲劳裂纹萌生 非金属夹杂物 “缺陷区”尺寸 拉伸性能 疲劳极限 屈服强度 疲劳强度
摘要随着汽车和航空器材轻量化和高性能的发展,迫切需要轻质材料的使用。镁合金以其密度低,比强度高,导电导热性好,而且无毒,对环境无污染,易回收利用等优点在汽车、电子产品和航空航天等领域得到越来越广泛的应用。与其它镁合金相比,Mg-Zn-Y-Zr系稀土镁合金因具有较高的室温和高温力学性能而倍受关注。本文以不同Zn/Y比的Mg-Zn-Y-Zr系镁合金为研究对象,系统地研究了热处理条件、织构、主要合金相(W-phase和I-phase)和Zn/Y比对合金力学性能的影响,揭示出Mg-Zn-Y-Zr系合金微观组织变化与其强化机理的关系,为镁合金材料设计、开发和应用提供了实验参考。 研究了不同热处理条件下锻造态Mg-Zn-Y-Zr镁合金中主要相(I-phase和MgZn析出相)对合金室温拉伸性能和疲劳行为的影响,揭示出具有较小尺寸的I-phase颗粒和细小MgZn析出相的T5态(180℃进行24小时人工时效)是该合金最佳热处理状态,可以使该合金的力学性能达到最优。利用超声疲劳实验方法研究和比较了T5退火态Mg-Zn-Y-Zr锻造态镁合金和ZK60挤压态镁合金在高周和超长疲劳寿命条件下(1E6-1E9周次)的疲劳行为。结果表明,T5退火态Mg-Zn-Y-Zr锻造态镁合金具有确定的疲劳极限,其值为85±5MPa。对于ZK60挤压态镁合金,其S-N曲线在5×1E6~1E8周次范围内存在一平台,而在1E8~1E9周次范围内,疲劳强度逐渐降低,对应于1E9周次的疲劳强度为90±5MPa。 通过对不同Y含量挤压态Mg-5.65%Zn-xY-0.8%Zr镁合金的力学性能进行研究,揭示出Mg-Zn-Y-Zr系镁合金的强化机制。XRD相分析表明,当Zn/Y比大于4.38时,合金中的主要相为准晶相I-phase和a-Mg基体。当Zn/Y比在1.10和4.38之间变化时,合金中的主要相为I-phase、W-phase和a-Mg基体。当Zn/Y小于1.10时,合金的主要相为W-phase和a-Mg基体。拉伸试验结果表明,当Y含量在0到1.72wt%之间变化时,合金的强度随着I-phase数量的增加而增加。由于Y含量在1.17 到 1.72wt%之间变化时,合金中I-phase的体积分数达到最大值,故具有较高的强度。相反,当Y含量在1.72 和3.69wt%之间变化时,随着合金中W-phase体积分数的增加,合金的力学性能不断降低。因此,Mg-Zn-Y-Zr镁合金强度的提高主要依赖于I-phase颗粒的强化作用。 研究了挤压过程对Mg-5.5%Zn-xY-0.8%Zr镁合金(Y含量分别为0,1.08,1.97 和 3.08wt%)的相分布和室温力学性能的影响。XRD分析表明,元素Y对合金的{0002}基面织构影响不大。然而,合金仍存在明显的力学各向异性。而且,随着Y含量的增加,纵向和横向抗拉强度(UTS)的差异显著增加。 通过研究含I-phase的Mg-Zn-Y-Zr合金微观组织、拉伸性能和疲劳行为,揭示出高低Zn/Y比(10和5)对合金微观组织和力学性能的影响。 利用I-phase对Mg-Zn-Y-Zr系镁合金的强化作用,研制出了具有低密度、高强度、较好塑性的Mg-Li-Zn-Y镁合金,解决了镁锂合金强度较低等问题。该含锂镁合金材料是处于两相区的双相合金,其组分及其含量为:锂(Li)含量为5.5~11.5%;锌(Zn)含量为0.5~15%;钇(Y)含量为0.1~8%和余量的镁(Mg)组成,所有百分数为重量百分数。该合金的抗拉强度为200~300MPa,屈服强度为150~260MPa,延伸率为17~65%,密度为1.34~1.83 g/cm3。
其他摘要With the requirement of weight reduction and improvement of mechanical property for the materials used in automobile and aerospace equipments, the application of lightweight structural materials becomes very imperative. Due to lower density, higher specific strength, higher conductivity, innocuousness, no pollution to environment, easy recycling and etc, Mg alloys have been widely used in the fields of automobile, electronic products and aerospace. Compared with other Mg alloys, Mg-Zn-Y-Zr alloys have attracted great interest because they have higher mechanical properties at both room and elevated temperatures. In this dissertation, we have systematically investigated the influence of heat treatments, texture, main alloy phases and Zn/Y ratios on the mechanical properties of Mg-Zn-Y-Zr alloys, and then deeply indicated the relationship between microstructure variation and strengthening mechanisms. It can provide important guidance and reference for the application and development of new Mg alloys with superior mechanical properties. Through investigating the influences of main phases (I-phase and MgZn precipitates) on the tensile properties and fatigue behavior of different heat-treated forged Mg-Zn-Y-Zr alloy at room temperature, it firmly disclosed that T5 tempering (24 hours artificial aging at 180℃) was the superior heat treatment. The combination of small zonal distributed I-phase particles and fine lamellar β1΄ precipitates made the alloy having the superior mechanical properties. In the high-cycle and super-long fatigue life regime (1E6-1E9 cycles), we have investigated and compared the fatigue behaviors of T5 tempering forged Mg-Zn-Y-Zr and as-extruded ZK60 alloys through using supersonic fatigue experimental method. It revealed that T5 tempering forged Mg-Zn-Y-Zr alloy had a definite fatigue limit and the value was 85 ± 5MPa. As for the as-extruded ZK60 Mg alloy, there existed a plateau between 5×1E6 and 1E8 cyc in the S-N curve, whereas the fatigue strength gradually decreased in the regime between 1E8 and 1E9 cyc. Therefore, the alloy had no definite fatigue limit and its fatigue strength corresponding to 1E9 cyc was 90±5MPa. Through investigating the mechanical properties of the as-extruded Mg-5.65wt%Zn -x%Y-0.8wt%Zr alloys with different Y contents, the strengthening mechanism of Mg-Zn-Y-Zr alloys has been disclosed. XRD analysis indicated that when Zn/Y ratio was higher than 4.38, the main phases of the alloy were I-phase and a-Mg matrix. When Zn/Y ratio was between 1.10 and 4.38, the main phases of the alloy were I-phase, W-phase and a-Mg matrix. When Zn/Y ratio was lower than 1.10, the main phase of the alloy were W-phase and a-Mg matrix. Tensile results indicated that when Y content was between 0 and 1.72wt%, the strength of the alloys increased with the quantity of I-phase increasing. When Y content was between 1.17 and 1.72wt%, I-phase volume fraction reached the maximum, then the alloy would have the highest strength. However, when Y content was between 1.72 and 3.69wt%, the strength of the alloy would gradually decrease with the increase of W-phase volume fraction. Therefore, the strengthening mechanism of Mg-Zn-Y-Zr alloys mainly relied on I-phase particle volume fraction. The influence of extrusion processing on the phase distribution and mechanical properties of Mg-5.5wt%Zn-xY-0.8wt%Zr (Y contents are 0, 1.08wt%, 1.97wt% and 3.08wt%) at room temperature has been investigated. Texture analysis revealed that Y content in the alloys basically had no influence on {0002} basal texture. However, the alloys exhibited obvious mechanical anisotropy. In addition, with Y content increasing, the anisotropy of ultimate tensile strength between extrusion direction (ED) and transverse direction (TD) became more and more remarkable. Based on the researches of microstructure, tensile properties and fatigue behavior of Mg-Zn-Y-Zr alloys with I-phase, the influence of higher and lower Zn/Y ratios (10 and 5) on microstructure and mechanical properties has been disclosed. Through using the strengthening mechanism of I-phase on Mg-Zn-Y-Zr alloys, new kinds of lower density, higher strength and better plasticity Mg-Li-Zn-Y alloys have been developed, which effectively solved the strengthening problem of Mg-Li alloy. These kinds of Mg alloys containing Li belonged to two-phase Mg-Li alloys and its chemical composition and elements content were: Li 5.5~11.5wt%, Zn 0.5~15wt%, Y 0.1~8wt% and balanced Mg. The new developed Mg-Li materials had the ultimate strength = 200~300MPa, yield strength = 200~300MPa, elongation ratio = 17~65% and density = 1.34~1.83 g/cm3.
页数182
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17158
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
许道奎. Mg-Zn-Y-Zr系镁合金的力学行为研究及其微观组织表征[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[许道奎]的文章
百度学术
百度学术中相似的文章
[许道奎]的文章
必应学术
必应学术中相似的文章
[许道奎]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。