IMR OpenIR
锂离子电池负极材料的制备、性能及电化学界面过程研究
其他题名Fabrication, electrochemical performance, and electrochemical interphases of anode materials for lithium ion batteries
张宏立
学位类型博士
导师成会明
2008-05-31
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词锂离子电池 负极材料 电化学性能 电化学界面
摘要锂离子电池具有工作电压高、能量密度大、循环寿命长、重量轻、自放电小、无记忆效应等突出优点,目前被广泛应用于各类便携式电子产品。随着锂离子电池应用领域的不断拓展,人们对其性能也提出了更高要求。为了获得性能优异的锂离子电池,一方面需要对电池材料(正极、负极、电解液)进行深入研究:改性升级传统材料,同时开发新材料;另一方面也需要对相关电化学过程中的基本科学问题有更深刻的认识和理解,以便针对性地指导新材料研发。 本文首先概述了锂离子电池及其相关材料的最新研究进展,然后从电化学界面现象和材料设计改性这两个角度开展了以下几方面的工作: (1) 利用聚焦离子束(FIB)技术,对天然石墨球表面的固体电解质中间相(SEI)膜进行了深入研究,揭示了其在电化学循环过程中的结构演化,发现SEI膜在天然石墨球内部裂纹处也可形成,并提出了“内SEI膜”的概念,最后根据这些新认识,完善了天然石墨球容量衰减的机制; (2) 综合FIB、XPS、Raman、XRD、TG-DSC等表征手段获得的实验研究结果,澄清了长久以来一直存在争议的关于石墨负极和碳酸丙烯酯(PC)基电解液的电化学界面相互作用机制的问题;证明了PC分子确实具有共插入石墨内部的能力,但其插入点位于微晶晶界处;指出了界面相容性差的根源:PC分子结构中的甲基基团使得PC分解产物蓬松,这个蓬松的分解产物不能阻止PC共插入,而PC的共插入引起了“链式反应”的发生; (3) 基于对天然石墨球容量衰减机制的认识,开展了表面包覆改性天然石墨球的工作:(i)利用立式流化床反应器成功地实现了厚度为~250 nm的热解炭层在天然石墨球表面一步、均匀的包覆。包覆后样品的电化学性能与原始样品相比获得了显著提高:15次循环后的容量仍保持在320 mAh/g以上(而原始样品的容量已经衰减到200 mAh/g以下),同时首次库仑效率提高到88%(原始样品为80%);(ii)通过在炭化程序中设计多个等温加热步骤,并合理地调整加热速率,实现了聚氯乙烯炭化产物层在天然石墨球表面的一步、均匀包覆,并且系统地研究了不同炭化程序的选择对包覆样品的晶体结构、形貌、比表面积、孔分布和氢元素含量的影响。电化学测试表明,在含有280 ℃和450 ℃等温加热步骤的炭化程序下包覆的样品,具有极佳的循环性能和倍率性能,并且优于目前商业化的MCMB产品; (4) 首次提出了一种基于自然界中海胆生物体的结构而设计的纳米/微米复合电极材料。通过在微米级的电极材料(以天然石墨球和Cr2O3为例)表面原位生长纳米炭纤维(直径~100 nm,长度几个微米,具有中空管状结构,石墨烯的排列呈鲱鱼骨状),制备出这种海胆状纳米/微米复合电极材料。研究表明该设计思想对于提高电极材料的循环性能尤为出色,并且具有普适性; (5) 在探索制备高容量的新型负极材料方面,使SiHCl3和H2在泡沫镍基体表面发生化学反应,首次制备出镍硅化物纳米带和纳米片,并深入研究了它们的形貌、成分、结构、生长机理。电化学性能测试表明镍硅化物纳米片(含Ni3Si与Ni31Si12相)经过20次循环后,仍然能够展现高于540 mAh/g的可逆容量。 总之,本文所取得的研究成果不仅加深了人们对电极与电解液的电化学界面过程的认识和理解,而且也为人们改性提高现有电极材料,以及设计开发适应高性能锂离子电池的新型电极材料提供了有益的启示。
其他摘要Currently, lithium ion batteries (LIB) are widely used in various portable electronic devices, because they have the following merits, such as high voltage, large energy density, long lifespan, light weight, low self-discharge rate, and no memory effect. With the continuous expansion of their application fields, the performance requirements of LIB are constantly enhanced. To achieve high-performance LIB, it is definitely necessary to implement R&D in battery materials (e.g. cathode, anode, and electrolytes), and on the other hand, it is also imperative to deepen the understanding of related electrochemical reaction processes and phenomena, which is helpful to guide the R&D in modifying traditional materials and designing novel materials. In this dissertation, we first review the recent development of LIB and related battery materials, and then introduce what we have done in the investigation of electrochemical interphases and in the modification and design of anode materials. (1) With the aid of focused ion beam (FIB) technique, we investigated the formation and evolution of solid electrolyte interphase (SEI) film on the surface of natural graphite (NG) spheres that experienced different electrochemical cycles. More importantly, we discovered that the SEI film can also be formed inside the NG spheres, and thus proposed a new concept of “internal SEI film”. Finally, we proposed capacity fading mechanisms of NG spheres on the basis of our understanding of the SEI film. (2) According to the overall results from FIB, XPS, Raman, XRD, and TG-DSC, we clarified the debate on interfacial interaction between propylene carbonate (PC)-based electrolytes and graphite anode: PC does have the ability of co-intercalation; The intercalation site is around the crystal boundary; The main wire-puller for the bad interfacial compatibility is the methyl group in PC molecule, which makes decomposition products of PC puffed and thus incapable of inhibiting the co-intercalation. And the co-intercalation subsequently triggers the occurrence of a chain reaction. (3) In view of the capacity fading mechanisms of NG, we adopted a surface-coating strategy to modify the NG: (i) Using a fluidized bed reactor, the NG spheres were coated in one step by a uniform layer of pyrolytic carbon with a thickness of ~250 nm. The coated sample displayed excellent cyclability, with the capacity above 320 mAh/g at the 15th cycle in comparison with less than 200 mAh/g for the pristine NG. Meanwhile, the initial Coulombic efficiency was also improved to 88% from original 80%. (ii) Through adding isothermal heating steps and properly adjusting heating rates in a carbonization procedure, we also achieved a homogeneous coating of PVC-carbonized products on the surface of NG spheres. Furthermore, the influence of different carbonization procedures on the structure, morphology, specific surface area, pore size distribution, and hydrogen content of coated samples was systematically studied. Electrochemical performance measurements indicated that the coated sample under the particular carbonization procedure including isothermal heating steps at 280 and 450 ℃ was better than a commercial MCMB in terms of reversible capacity and rate capability. (4) Inspired by a special biological structure in nature, we proposed a kind of urchin-like nano/micro hybrid design to modify conventional electrode materials. Using catalytic chemical vapor deposition to in situ grow carbon nanofibers (CNF) on the surface of micrometer-sized NG spheres (or Cr2O3 particles), we fabricated the nano/micro hybrid composite with an urchin-like structure. The typical characteristics of the as-grown CNF were ~100 nm in diameter and several micrometers in length, having a hollow core throughout the length and a herringbone-type graphene structure. It was found that this kind of design was especially helpful for improving electrochemical cyclability and had a wide generality. (5) On the aspect of exploring high-capacity anode materials, we for the first time synthesized nickel (Ni) silicide nanobelts and nanosheets based on the chemical reaction of Ni substrate with SiHCl3 under H2 atmosphere. Their morphological, structural, and compositional features were detailedly characterized, and their possible growth mechanisms were discussed. The Ni silicide nanosheets (comprising Ni3Si and Ni31Si12), subjected to electrochemical measurements, demonstrated a capacity of above 540 mAh/g even at the 20th cycle. In conclusion, the meaningful results obtained in the dissertation not only deepen the understanding and knowledge of electrochemical interphases between electrodes and electrolytes, but also are helpful and revelatory for the modification of conventional electrode materials and for the design of novel materials that can be used in next-generation high-performance LIB.
页数150
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17163
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
张宏立. 锂离子电池负极材料的制备、性能及电化学界面过程研究[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张宏立]的文章
百度学术
百度学术中相似的文章
[张宏立]的文章
必应学术
必应学术中相似的文章
[张宏立]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。