IMR OpenIR
多功能磁性纳米粒子及其复合物的制备与表征
其他题名Synthesis and characterization of multifunctional magnetic nanoparticles and their nanocomposites
张莹
学位类型博士
导师张志东
2009-11-09
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词磁性纳米粒子 超小fe3o4纳米粒子 树状大分子 荧光量子点 纳米复合物 化学共沉淀法 溶胶-凝胶法 化学偶联 巯基配位
摘要本文采用化学共沉淀法、溶胶-凝胶法、化学偶联法及巯基配位相结合的方法制备了超小尺寸磁性纳米粒子、磁性/树状聚酰胺阳离子纳米复合物、磁性/荧光量子点纳米复合物。通过改变反应条件以及控制稳定剂等手段,用化学共沉淀法制备了具有不同尺寸范围的超小Fe3O4磁性纳米粒子。进一步利用溶胶-凝胶法对Fe3O4表面进行改性,采用四乙氧基硅烷为改性剂形成具有不同SiO2壳层厚度的Fe3O4@SiO2 纳米颗粒。然后分别采用氨基丙基甲氧基硅烷、巯基丙基甲氧基硅烷为改性剂形成具有氨基活性基团和巯基活性基团的Fe3O4@SiO2 纳米颗粒。氨基活性基团的Fe3O4@SiO2纳米颗粒通过化学偶联的方法与树状聚酰胺PAMAM进行了组装,形成Fe3O4-PAMAM磁性/树状聚酰胺阳离子纳米复合物。巯基活性基团的Fe3O4@SiO2 纳米纳米颗粒通过巯基配位的方法与CdSe/ZnS荧光量子点进行了组装,形成Fe3O4@SiO2-CdSe/ZnS磁性/荧光纳米复合物。利用X射线粉末衍射(XRD)、透射电子显微镜 (TEM)、X光电子能谱(XPS)、X射线能量色散谱(EDS)等测试技术,系统研究了各种磁性Fe3O4纳米粒子及复合物的组成、颗粒形貌、尺寸分布及其元素的价态以及复合物的结构特征。利用红外光谱(IR)、紫外光谱(UV)、荧光光谱(FL)、原子力显微镜(AFM)及超导量子干涉仪(SQUID)研究了所制备的纳米复合物的化学活性、荧光性、分散性和磁性,并初步探讨了上述纳米复合物在磁共振造影(MRI)、基因传递及靶向细胞分离方面应用的潜在可能性。 用化学共沉淀法制备了PVP稳定的超小尺寸Fe3O4磁性纳米粒子。PVP通过羰基C与Fe原子的相互作用,起到防止Fe3O4磁性纳米粒子的聚集并限制其尺寸的作用。当Fe3+和Fe2+ 的滴加速度从1.4mL/min减小到0.35mL/min时,Fe3O4纳米粒子的尺寸从6.5nm减小到1.9 nm。如上方法制备的Fe3O4纳米粒子呈均匀球形、分散性良好。小鼠体内磁共振造影和磁靶向实验结果表明,PVP稳定的超小Fe3O4磁性纳米粒子能够在靶向部位有效聚集并在肺、肝、脾、肾及骨髓部位显示出明显的对比增强。因而,该方法制备的PVP稳定的超小Fe3O4纳米粒子在MRI及磁靶向药物传递方面有良好的应用前景。 用化学偶联法通过两步酰化反应制备了Fe3O4-PAMAM纳米复合物。两步酰化反应是通过亲水性空间臂—聚乙二醇二酸先后与氨基硅烷修饰的磁性纳米粒子和氨基末端的PAMAM树状大分子反应来进行的。最终由磁性粒子和树状大分子组装成的Fe3O4-PAMAM纳米复合物平均直径180nm 左右,分散性良好,亲水性增强。由于具有末端氨基,这些磁性/阳离子纳米复合物具有结合基因分子的能力,因而在磁靶向基因传递方面有很好的应用前景。 用溶胶-凝胶和巯基配位相结合的方法实现了磁性Fe3O4和CdSe/ZnS量子点的组装,制备了以Fe3O4为核、以CdSe/ZnS量子点为壳且表面具有羧基官能团的磁性/荧光纳米复合物。该纳米复合物表面的羧基基团使Fe3O4@SiO2–CdSe/ZnS纳米复合物具有很好的化学活性和水溶性。有趣的是,这些平均直径为25nm的纳米粒子还具有光学稳定性,并且能够用磁铁很容易地从溶液中分离出来。该纳米复合物进一步与氨基基团的配体如乳糖酸乙二胺反应,成为具有特异靶向性的磁性/荧光纳米复合物。利用这些磁性/荧光复合物可以分离表达asialoglycoprotein受体的hepG细胞,以用于肝癌的诊断。
其他摘要Different kinds of multifunctional nanocomposites  ultra-small Fe3O4 nanoparticles, magnetic/ polyamidoamine (PAMAM) dendrimers cation nanocomposites and magnetic/ fluorescent nanocomposites were prepared by using the co-precipitation method, sol-gel method, chemical combination and thiol coordination method. Magnetic Fe3O4 nanoparticles with different sizes were prepared by using co-precipitation method by controlling protecting agent and reaction condition. The surface of Fe3O4 nanoparticles were modified by the sol-gel method in which tetraethylorthosilicate as a modifier. Then, Fe3O4@SiO2 nanospheres with different shell thickness were formed. At last, with the modifying of 3-mercatopropyl-trimethoxysilane and 3-aminopropyl-triethoxy silane, Fe3O4@SiO2-NH2 and Fe3O4@SiO2-SH nanospheres were obtained. Fe3O4@SiO2-NH2 nanospheres and PAMAM dendrimers were combined by amidation reaction to form Fe3O4-PAMAM cation nanocomposites. Fe3O4@SiO2-SH nanospheres and CdSe/ZnS quantum dots were assembled by thiol coordination method to form Fe3O4@SiO2-CdSe/ZnS nanocomposites. The phase constitution, particles morphologies, microstructure and the binding energy of the elements of the different kinds of nanocapsules and the structure characteristics of the macro-aggregates have been studied by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray energy diffraction spectrum (EDS) in details. The magnetic characteristics, chemical activities, fluorescent and dispersion of the nanocomposites were measured by superconducting quantum interface devices (SQUID), infrared spectroscopy (IR), fluorescence spectroscopy (FL) and atom force microscope (AFM). Possibility of these nanocomposites for application of magnetic resonance imaging (MRI), gene delivery and cell separation was discussed. Ultra-small Fe3O4 nanoparticles with uniform distribution were prepared by using the co-precipitation method in which the polyvinylpyrrolidone (PVP) serves as a protecting agent. PVP molecules played the role of preventing the aggregation and restricting the size of Fe3O4 nanoparticles. The particles’ size was determined by the dripping rate. When the dripping rate decreased from 1.4 to 0.35 mL/min, the size of the Fe3O4 particles decreased from 6.5 to 1.9 nm. The as-prepared Fe3O4 nanoparticles with diameter from 6.5 to 1.9 nm were homogeneous and well dispersed. In vivo results for magnetic resonance imaging and magnetic targeting showed that the PVP-Fe3O4 particles could be concentrated at the target area and obviously exhibited negative contrast enhancement for lung, liver, spleen, kidney and marrow. The PVP-Fe3O4 particles prepared by the present method have encouraging applications in MRI and magnetic delivery of drug and should be investigated further. Fe3O4-PAMAM nanocomposites were prepared by using chemical combination by amidation reaction. The magnetic iron-oxide nanoparticles functionalized by amino groups and the PAMAM G5.0 dendrimers terminated by amino groups were combined with the hydrophilic spacer of PEG biscarboxylate by amidation to form nanocomposites. Such nanocomposites with the diameter 180 nm showed excellent dispersion, hydrophilicity and terminated amino groups. These terminated amino groups can further bind gene molecules, therefore, Fe3O4-PAMAM nanocomposites have excellent foreground in magnetic target gene delivery. The magnetic Fe3O4 particles and CdSe/ZnS quantum dots (QDs) were assembled by sol-gel method and thiol coordination method to form magnetic/fluorescent nanocomposites with a magnetic core of iron oxide Fe3O4 and a shell of CdSe/ZnS quantum dots. The carboxy groups covering outside resulted in the chemical activity and water solubility of the nanocomposites. It was interesting that the nanocomposites with a mean diameter of 25 nm and exhibited well magnetic response, photostability and they could be separated from the solution easily. In addition, the nanocomposites could further react with some ligands with amino groups such as 1-N-[O-b-d-Galactopyranosyl-(1,4)-d-gluconamide]-2-N-methylamine magnetic/ fluorescent nanocomposites to form special target. Such magnetic/ fluorescent nanocomposites can separate hepG cells expressing asialoglycoprotein and benefit for lung cancer diagnosis.
页数101
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17168
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
张莹. 多功能磁性纳米粒子及其复合物的制备与表征[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张莹]的文章
百度学术
百度学术中相似的文章
[张莹]的文章
必应学术
必应学术中相似的文章
[张莹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。