IMR OpenIR
熔体发泡法制备泡沫镁的工艺研究
其他题名Fabrication of magnesium foam by melt foaming process
林曦
学位类型硕士
导师杨院生
2008-05-30
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词泡沫镁 熔体发泡工艺 孔隙结构 泡沫体稳定性
摘要多孔泡沫金属材料是一种兼具功能和结构双重属性的新型工程材料。这种轻质材料不仅保留了金属的可焊接性、导电性及延展性等特性,而且具备吸能减震、消音降噪、电磁屏蔽、透气透水、低热导率等多孔泡沫材料的特性,有望在不久的将来拥有更为广阔的应用前景。随着镁及其合金近年来的快速发展,多孔镁泡沫材料引起人们很大兴趣。但目前制备多孔泡沫镁存在诸多的问题和困难,使得研究设计一种工艺简单、产率高、成本较低、制品尺寸较大的多孔泡沫镁制备工艺具有非常重要的意义。 本文在传统的熔体发泡法工艺原理基础上研究设计了制备闭孔泡沫镁的熔体发泡工艺,制备出了大尺寸,结构均匀、稳定的泡沫镁样品,并且对工艺参数对泡沫样品结构的影响,以及发泡过程中液态泡沫体的稳定性机理进行了研究。 研究结果表明,MgCO3是熔体发泡法制备泡沫镁较为理想的发泡剂。以气体保护和合金化阻燃相结合的方式在工艺过程中可有效地保护镁熔体。在此基础上设计了熔体发泡法制备泡沫镁的工艺流程,并初步确定了各个工艺过程的具体参数。 泡沫镁的孔率随着MgCO3发泡剂用量的增加而增加,当用量为3wt%时,对某种粒度的发泡剂,得到的样品孔率最大。所使用的MgCO3发泡剂粉末粒度越大,得到的泡沫样品其平均孔径也越大。而保温温度与所用合金原料的成分有非常强烈的匹配关系,所选用的合金原料必须要有足够宽的两相温度区间,才能得到结构均匀的泡沫样品。随着搅拌时间和发泡时间的延长,泡沫样品孔率均逐渐增大。合金自身析出的初生固相能对发泡时的液态泡沫体稳定性产生重要的影响,当发泡前熔体中的初生固相分数不超过20%时,对泡沫体产生的稳定作用最大。发泡过程中由CO2气体和镁熔体反应在气/液界面上形成的反应固相层,对发泡过程中液态金属泡沫体也产生了重要的稳定作用。 实验得到了最佳搅拌时间等优化的发泡工艺参数。制备出的泡沫镁孔率范围为67%~82%,孔隙结构在整个纵向剖面上的分布比较均匀,泡沫样品的密度总体上沿着从样品底部到顶部的方向增大,而孔径大小可在一定范围内调节。 泡沫镁的压缩变形过程可分为三个阶段:初始小应变范围的弹性阶段,较大应变范围的应力平台阶段和最后的致密化阶段。泡沫镁的孔径较小时,其平台应力较高,吸收能量性能更好。泡沫镁的抗压强度为2.15 MPa~10.63 MPa,弹性模量为0.58 GPa~1.64 GPa。泡沫镁的抗压强度和弹性模量均随着孔率的增大而降低。
其他摘要Cellular metallic foams are a new class of engineering materials for both structural and functional purposes. These lightweight materials have not only the characteristics of metals, such as weldability, electric conductivity, ductility, but also the characteristics of cellular foams, such as energy absorption, acoustic damping, electromagnetic shielding, fluid infiltration, low thermal conductivity. This makes their properties so interesting that exciting new applications are expected in the near future. With the rapid development of Mg and its alloys, cellular Mg foams have drawn increasing interest. However, various difficulties remain unsolved in making Mg-based foams. Therefore it is of great significance to study and design a fabrication process that is simple, of high output and low cost, and is capable of producing large sized Mg foams. This study designs and investigates a melt foaming process to fabricate Mg foams based on traditional foaming principles and processes. Large sized Mg foams with uniform cell structure and application potentials are fabricated. The effects of processing parameters on the foam structure, and the mechanism for liquid metal foam stability during the foaming process are also investigated. The experiments show that MgCO3 is a kind of effective blowing agent for foaming of Mg alloys. By using protective atmosphere and flame retardant, the Mg melt is prevented from severe oxidation. Based on these results, the melt foaming process to fabricate Mg foams is designed, and specific processing parameters are initially set. Foam porosity increases with increasing amount of MgCO3 addition. When the amount of MgCO3 addition is 3wt% for a given granularity, the foam porosity reaches the maximum. The mean cell diameter of the foam increases with increased granularity of MgCO3 powder. The holding temperature must coordinate with the melting behavior of the alloy. The Mg alloy for foaming must have as wide a melting range as possible to yield foams with uniform cell structure. Longer stirring time and longer foaming time both result in higher foam porosity. The primarily solidified phase in the melt precursor has a great influence on the liquid foam stability during the foaming process. Maximum stability is achieved when the primary solid fraction in the melt precursor is no more than 20%. The thin solid reaction layer generated on the gas/melt interface by reactions between CO2 and Mg melt also plays an important role in stabilizing the liquid metal foam during the foaming process. The optimal parameters in the foaming process are determined for the foams with optimized cell structure. Mg foams are fabricated by the melt foaming process with porosities in the range from 67% to 82%, and uniform cell structure along the longitudinal section of the foam. The density of the foam generally increases from its bottom up to top, and the cell size can be adjusted to some degree. Compression tests of the foams show three stages: the linear elastic stage within an initially small strain, a long plateau stage with fluctuating flow stress to large strain, and finally a densification stage. The plateau stress of the foam with smaller cell size is higher than that with larger cell size, thus higher energy absorption capacity. The compressive strength is 2.15 MPa~10.63 MPa and Young’s modulus is 0.58 GPa~1.64 GPa for the Mg foam. The compressive strength and Young’s modulus both decrease with the increase in foam porosity.
页数86
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17185
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
林曦. 熔体发泡法制备泡沫镁的工艺研究[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[林曦]的文章
百度学术
百度学术中相似的文章
[林曦]的文章
必应学术
必应学术中相似的文章
[林曦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。