IMR OpenIR
几种含铼单晶高温合金中μ相的析出行为及其影响
其他题名Precipitation behavior and role of μ phase in several Re-containing single crystal superalloys
成魁宇
学位类型博士
导师胡壮麒
2009-04-09
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词含铼镍基单晶高温合金 铼的作用 Μ相 应力时效 蠕变。
摘要本文研究了高温合金CMSX-4、R0、R1和R3中μ相的析出行为及其对合金力学性能的影响。合金R0、R1和R3是由中国科学院金属研究所(IMR)和韩国材料科学研究所(KIMS)根据合金CMSX-4的成分共同设计的。其中,合金R0的成分是用1.5%wt.Cr和3%wt.W取代合金CMSX-4中的3%wt.Re,而合金R1和R3是通过分别向合金R0中加入1%wt.Re和3%wt.Re而得到的。论文重点研究了μ相的转变过程、固有特征、转变过程中所依赖的影响因素(包括温度-时间、成分和应力)以及它在蠕变过程中的作用。实验中主要用到了光学显微镜、扫描电镜、透射电镜、X射线仪、电子探针和蠕变仪等设备。μ相的标定借助于软件Desktop Microscopist的帮助。 μ相的主要成分为Ni、Cr、Co、W和Re元素,其中W元素在μ相中占有很大的比重。Cr和Co元素在μ相中的含量相对稳定,而Ni、W和Re元素的含量则有较大的波动。相对于时效初期的μ相,时效后期μ相中难熔合金元素含量明显增多,而高温时析出的μ相成分相对于低温时析出的μ相成分,难熔合金元素含量也明显增多。W和Re占据μ相原型B7A6中的A原子位,Cr和Co占据μ相原型B7A6中的B原子位,而Ni则同时占据μ相原型B7A6中的A和B原子位。 随着Re元素含量的逐步提高,合金R0,R1和R3的组织稳定性逐渐降低,高温时效时析出的TCP相明显增多。但是Re的加入没有改变TCP相的类型,合金中的TCP相都为μ相。Re元素的加入改变了μ相成分从而提高μ相形成温度,加快了较高温度下(C曲线鼻尖温度附近)μ相的形核以及促进较低温度下(850oC以下)μ相的析出,使μ相的形核在850oC至C曲线鼻尖附近温度的范围内受到了一定的抑制。 除了对Mo元素以外,Re元素的加入并没有明显影响其它合金元素在合金中的枝晶偏析。但Re能够稳定或增强其它合金元素在γ/γ΄相中各自的偏析程度;随着Re元素的增多,γ基体中的W含量增高,而Cr含量明显降低。这是三个合金随着Re含量的增加,合金组织不稳定性加剧,易于μ相析出的根本原因。 γ'相的演变能够影响时效时μ相的形核、长大方式以及其在蠕变过程中的断裂行为。由于主要析出相γ΄相的影响,μ相在高温合金中的形核要比长大对温度的依赖性强:低温下,μ相形核慢而长大较快,所以形成片状;而较高温度下μ相形核率很大,μ相颗粒生长聚集在一起并互相影响,大块的以及棒状的μ相颗粒明显增多,形貌多样化。μ相颗粒的宏观形貌与它们和基体的取向关系相关: 片状μ相—— <1-100>μ//<110>γ或<11-20>μ//<110>γ或<11-20>μ//<112>γ,因为在{0001}μ//{111}γ 界面上共格关系好。 棒状μ相——在棒状μ相形核与长大的过程中,μ相的低指数晶面{1-210}μ和 {1-100}μ与γ/γ'基体的低指数晶面{001}γ/γ'、{011}γ/γ'、{112}γ/γ'和{111}γ/γ'保持一定的共格关系,并且沿着<0001>μ或<110>γ方向生长。<1-100>μ与<110>γ偏离大概2.26~2.5o。 不规则块状μ相——无特定的取向关系。 μ相的析出量,大小和形貌都是影响合金蠕变性能的重要因素。大片的μ相阻碍了γ/γ′两相组织的连续性,导致合金蠕变过程中变形的不均匀。棒状μ相在蠕变变形中的作用取决于蠕变速率,而蠕变速率则与高温合金中主要的强化相γ'密切相关。蠕变过程中棒状μ相的断裂并不是由于应力集中,而是由于形变不协调性。与γ'相的演变相比,棒状μ相或是通过“软化”γ基体或是通过阻碍γ/γ'两相组织连续性的方式影响合金性能的作用都是很小的;大颗粒的μ相虽然能够引起应力集中但不足以导致裂纹的萌生。μ相影响合金的蠕变性能主要是在蠕变初期,而不是后期通过产生裂纹导致合金破坏。但是μ相能够降低合金的延伸率。 高温时效时,外加应力的大小和方向,合金本身由于成分偏析存在的内应力以及γ΄相的演变能够影响μ相的析出。由于内应力的影响,当对试样施加较小的外应力时μ相的析出量相对无应力时效时会有明显的变化,而后随拉应力的增加μ相的析出量相对增多,压应力则相反。外应力能够通过影响合金基体的晶格来影响γ/μ两相之间的界面错配关系,从而抑制或促进μ相的析出。
其他摘要In this dissertation, precipitation behavior and role of the Mu (a topologically close packed (TCP) phase-μ) phase are investigated with the well-known commercial single crystal (SX) superalloy CMSX-4 and three candidate SX superalloys developed by IMR and KIMS. The candidate alloys were designed by varying the contents of Re, W and Cr to some extent with respect to the composition of the alloy CMSX-4. The candidate alloy R0 was obtained by substituting 1.5%wt. Cr and 3%wt. W for the 3%wt. Re in alloy CMSX-4, while the candidate alloy R1 was made by adding 1%wt. Re to alloy R0 and the candidate alloy R3 by adding 3%wt. Re. This dissertation focused on the transformation process of μ, the factors (temperature-time, composition and stress) which can affect its transformation and its role during creep deformation. Many experimental facilities such as high temperature furnace, creep deformation tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer and electron probe microanalysis have been used. The μ phase was mainly composed of Ni, Cr, Co, W and Re, and W was the determinant forming element of μ phase. In the composition of μ phase, Cr and Co contents were relatively stable, while Ni, Re and W contents varied to some extent. The μ phase contained more refractory alloy elements at higher temperature or after longer thermal exposure than at lower temperature or after shorter thermal exposure. W and Re located the A positions of μ prototype B7A6, Cr and Co the B positions and Ni both the A and B positions. Addition of the Re increased the phase instability of the alloys but did not change the type of the precipitation. All the TCP phase found in the alloys was characterized as μ phase. Moreover, addition of the Re increased the forming temperature of μ phase, accelerated the precipitation of μ phase near nose temperature (TTT curve) and at low temperature (850oC), but relatively depressed the precipitation of μ phase between these temperatures due to the low diffusivity of Re. Except for Mo, addition of Re has not significantly changed the dendrite segregation of other alloying elements. However, it could stabilize or increase the segregation abilities of other alloying elements in the γ/γ΄ phases. With adding Re to the alloy, the W content increased in γ phase, but the Cr content decreased, which is the reason that addition of the Re enhanced the phase instability of the alloys. The γ' evolution could affect the nucleation, growth morphology, and the fracture behavior during creep deformation of the μ phase. Nucleation of the μ phase in superalloys depended more on the temperature than growth of the μ phase. Therefore, at low temperature the μ particles presented large plate-like morphology due to low nucleation rate and high growth rate, but at high temperature rod-like and blocky μ particles increased obviously because of the high nucleation rate and interaction of growth. Morphologies of the μ particles and the orientation relationship between them and matrix were related: Plate-like —— <1-100>μ//<110>γ or <11-20>μ//<110>γ or <11-20>μ//<112>γ, due to relative high coherency at {0001}μ//{111}γ; Rod-like —— nucleated and grew based on both the low index planes {001}γ/γ'、{011}γ/γ'、{112}γ/γ' or {111}γ/γ' and {1-210}μ or {1-100}μ,with growth direction of <0001>μ and <110>γ and zone of <1-100>μ was about 2.26~2.5o from zone of <110>γ due to relative low coherency at {1-100}μ与{110}γ; Irregular blocky —— there is no specific orientation relationship. Precipitation amount, size and morphology of the μ phase could affect the creep properties of superalloys. Precipitation of μ phase could lower the solution of alloying elements in γ matrix; big plate-like μ particle could disrupt the continuity of γ/γ′ microstructure and then caused the inhomogeneous deformation during creep; role of the rod-like μ particles during the creep deformation was dependent on the creep rate which is closely related to the main strengthening phase γ΄. The rod-like μ particles were not fractured by stress concentration and their effect on the creep properties by softening γ phase or disrupting the γ/γ΄ structure was much smaller compared to the dramatic γ΄ evolution; big sized μ particles could cause stress concentration but not strong enough to initiate the crack. The μ phase affected the creep properties at the early stage of creep rather than at the later stage. However, the μ phase could decrease the creep elongation. During high temperature thermal exposure, sign and magnitude of the applied stress, internal stress caused by dendrite segregation and γ΄ evolution all could affect the μ phase precipitation. Due to the internal stress, precipitation of the μ phase varied significantly when much low applied stress was loaded. Later, with increasing the tensile applied stress precipitation of the μ phase relatively increased, while contrary for the compressive applied stress. Applied stress depressed or accelerated the precipitation of μ phase through influencing the lattice misfit between γ matrix and μ phase.
页数123
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17215
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
成魁宇. 几种含铼单晶高温合金中μ相的析出行为及其影响[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[成魁宇]的文章
百度学术
百度学术中相似的文章
[成魁宇]的文章
必应学术
必应学术中相似的文章
[成魁宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。