IMR OpenIR
Ti-24Nb-4Zr-8Sn合金表面生物相容性研究
其他题名Investigation on biocompatibility of Ti-24Nb-4Zr-8Sn alloy
郑彩云
学位类型博士
导师杨锐
2009-03-16
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词Ti-nb-zr-sn 表面改性 电化学腐蚀 细胞吸附 玻璃陶瓷涂层
摘要Ti24Nb4Zr8Sn (wt.%)合金(简称Ti2448)是一种新型低模量、高强度且不含有毒元素的多功能β型钛合金。作为一种具有巨大应用潜力的新型医用钛合金,除了力学上应该满足硬组织修复和替代材料的基本要求外,还应具有优良的生物相容性。钛植入体的生物相容性主要取决于其表面氧化膜。本文采用体外模拟人体体液浸泡的方法研究了Ti2448合金表面自然形成氧化膜和采用热氧化与水热处理相结合的方法形成氧化膜诱导磷灰石形成的能力,并用电化学方法评估了上述氧化膜在生理环境下的耐腐蚀性能。同时,利用物理方法在合金表面制备了活性涂层,探讨了表面改性和物理涂层两类表面生物活化方法诱导磷灰石形成的机理。通过研究发现: 在诱导磷灰石形成方面,Ti2448合金表面自然形成氧化膜的磷灰石形成诱导能力主要取决于表面羟基含量。当晶粒尺寸从100μm缩小到100nm时,细化晶粒能显著增加表面原子数从而提高合金表面Ti-OH含量,在模拟人体体液(简称SBF)中浸泡时合金表面形成磷灰石的时间缩短。进一步研究发现,分别采用热氧化和水热处理相结合的方法在合金表面引入钙以及用物理方法引入钙和磷能大大加速磷灰石形成。首先,对合金采用热氧化与水热处理相结合的双步处理,在合金表面形成富含TiO2、CaTiO3、CaCO3和 Ca(OH)2的改性层,一方面TiO2水化形成丰富的Ti-OH,另一方面CaTiO3的存在提供磷灰石形核所需的Ti-O-Ca键,并且部分CaCO3和Ca(OH)2溶解,提高了合金表面钙离子浓度和过饱和度。因此,经上述处理后的Ti2448合金表面在SBF中浸泡3天即能形成完整的磷灰石层。其次,采用蘸涂并烧结的方式在合金表面制备了60CaO•30P2O5•3TiO2•ZrO2•6Na2O含钙磷生物玻璃陶瓷涂层。在SBF中浸泡时,一方面,表面有少量的Ti-OH以及大量的钙离子和磷酸根离子的溶解,有益于磷灰石在涂层表面的形核;另一方面涂层中的β-Ca3(PO4)2能够与水介质发生反应,转变为磷灰石。因此,该玻璃陶瓷涂层在SBF中浸泡7天能诱导完整磷灰石层形成。 在细胞相容性方面,Ti2448合金原始表面早期成骨细胞黏附较好,显示出较高的细胞贴壁率。经热氧化及氢氧化钙溶液中的水热处理后,与原始表面相比,成骨细胞黏附和增殖能力基本相当,而玻璃陶瓷涂层表面成骨细胞黏附和增殖能力强,显示出较基体合金更优异的细胞相容性。 在耐腐蚀性方面,Ti2448合金在磷酸盐缓冲溶液中具有较高的自腐蚀电位,较低的腐蚀电流,与纯钛的耐蚀性能相当。经热氧化并随后在饱和氢氧化钙溶液中水热处理后,腐蚀电流密度较600℃热氧化试样降低,腐蚀速度减小。在磷酸盐缓冲溶液中添加牛血清蛋白时,血清蛋白在Ti2448合金表面吸附良好,蛋白质吸附降低了Cl-离子的侵蚀,减小了Ti2448合金腐蚀倾向,但由于蛋白质分子与合金的络合,加速金属离子的溶解,腐蚀电流增大。
其他摘要The Ti-24Nb-4Zr-8Sn alloy (wt%, abbreviated as Ti2448) is a new kind of multi-functional -titanium alloy, which contains no toxic elements and possesses low elastic modulus and high strength. As a potential biomedical alloy, it should be biocompatible as well as elastically compatible when used as hard tissue repairing and substituting implant. The biocompatibility of titanium alloy mainly depends on its surface oxide layer. In this work, apatite forming ability of the oxide layer that naturally formed in air and that prepared by thermal oxidation with following hydrothermal treatment was investigated by in vitro soaking experiment, and its corrosion resistance was evaluated in simulated body environment. In addition, a glass-ceramic coating was fabricated on the surface of Ti2448 by a dip-coating method. The apatite formation mechanisms on the surface modified and glass-ceramic coated Ti2448 were discussed. The apatite forming ability of the naturally formed oxide layer derives from the amount of surface Ti-OH group. When the grain size was refined from 100 μm to 100 nm, the number of surface Ti-OH group is significantly increased. Thus the apatite forming ability was enhanced by grain refinement. With further research, we found that both calcium and phosphorus on the surface layer accelerate apatite precipitation on the substrate. The surface layer of the sample subjected to thermal oxidation plus hydrothermal treatment consists of TiO2, CaTiO3, CaCO3 and Ca(OH)2. On one hand, a large number of Ti-OH formed via TiO2 hydroxylation when soaked in simulated body fluid. On the other hand, Ca2+ ions incorporated by the hydrothermal treatment in boiled Ca(OH)2 solution could act as nucleation sites for apatite and accelerate its formation. Both Ti-O-Ca bonding provided by CaTiO3 and the dissolution of the compounds such as CaCO3 and Ca(OH)2 into the aqueous solution which increases the concentrations of Ca2+ ions promote the formation of apatite. Therefore, apatite formed in 3 days when soaked in the simulated body fluid on the sample with the above treatment. When the sample with the glass-ceramic coating was soaked in the simulated body fluid, apatite formed via two ways, which is different from that on the surface modified sample. Firstly, a bit of Ti-OH and a large amount of calcium and phosphorous ions formed, which provided apatite nucleation sites. Secondly, β-Ca3(PO4)2 in the coating could transform to apatite during soaking. Thus, apatite formed in 7 days on the surface of glass-ceramic coated Ti2448 alloy. In cell culture, the surface layer with thermal oxidation plus hydrothermal treatment has high cell attachment efficiency of osteoblast, similar to that of original surface of Ti2448 alloy. However, the glass-ceramic coating promotes osteoblast adhesion and proliferation as compared with uncoated alloy. In vitro corrosion behaviour of Ti2448 alloy was investigated in phosphate-buffered saline by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that it has high corrosion potential and low corrosion current density, which is comparable to that of c.p. Ti. However, the corrosion current density is increased by thermal oxidation at 600 oC, and it decreased after further hydrothermal treatment. Protein adsorption on one hand blocked the attack of Cl- ions and on the other hand increased the dissolution of metal ions due to chelation which finally results in the increase of corrosion current density.
页数114
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17226
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
郑彩云. Ti-24Nb-4Zr-8Sn合金表面生物相容性研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[郑彩云]的文章
百度学术
百度学术中相似的文章
[郑彩云]的文章
必应学术
必应学术中相似的文章
[郑彩云]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。