IMR OpenIR
M951合金成分作用及力学性能的研究
其他题名Investigation on effect of elements and mechanical properties of M951 alloy
周鹏杰
学位类型博士
导师孙晓峰
2008-05-28
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词M951镍基合金 低周疲劳 高周疲劳 蠕变
摘要摘要 本文研究了M951合金中硼、锆、钇对组织和力学性能的影响,以及M951合金的持久、蠕变和高低周疲劳性能,得到如下结果: 加入适量的B可以提高M951合金在1100℃/40MPa的持久寿命。随B含量增加,合金的持久寿命先增加后减少,最佳B含量在0.024%左右。而B含量增加,合金1000℃的屈服强度和断裂强度都呈下降趋势,拉伸塑性增加。该效应被认为是由于B原子富集在晶界,使位错易于穿越晶界,减小晶界应力集中,延缓晶界开裂,这样可以使合金有更长的持久寿命,而拉伸强度却不增加。加入B也能够提高合金的室温冲击韧性。如果B加入太多,将会生成大片状的硼化物。这种大片状的硼化物是裂纹的起源之一,会对力学性能造成不利的影响。B会降低合金的初熔温度和增加共晶量。 加入适量的Zr,不但能增加合金1100℃/40MPa的持久寿命,也能提高合金在1000℃的拉伸强度和塑性。Zr略微降低合金的室温冲击韧性。加入Zr对合金组织有两个明显影响:首先,Zr能抑制晶粒内骨架状的碳化物生成并改善碳化物的形态,使其由较连续的棒状和片状转化为不连续的块状;其次,加入Zr能增加合金中的γ/γ'共晶量。 加入适量的Y可以增加合金1100℃/40MPa的持久寿命,最佳Y含量在0.013%左右。Y略提高合金950℃拉伸强度但对塑性的影响不明显。Y能改善碳化物的形态,使其由较连续的棒状和片状向不连续的块状转变,这种改变对性能有利。Y也能大幅增加合金中的γ/γ'共晶数量,在不含Y的合金基本上没观察到γ/γ'共晶。同时加入B和Y对共晶量的影响更加显著。在Y含量超过0.03% ,经850℃/1000小时长期时效后合金中会析出一种体心立方的Ni6Al2Y3相。 Zr、Y都具有较大的原子半径和正的偏析系数。凝固末期,这些元素在剩余合金液中富集。由于它们的原子半径较大且在剩余合金液中浓度较高,阻碍合金元素的扩散,加剧糊状区元素分布的不平衡,使共晶容易形成。共晶量增加的同时也伴随着硼化物的增加。Zr、Y是强碳化物形成元素,进入碳化物后造成晶格畸变而使体系自由能额外增加,导致碳化物生长向自由能减小的形貌方向转变。 M951合金在700℃蠕变变形的主要机制为位错切割γ'相,形成孪晶和层错。长期蠕变后γ'相形貌变得不规则,没有发生定向粗化。在900℃,位错主要在基体通道内运动,并且受阻于γ'和基体的界面,形成位错的缠结和位错网。在温度高于900℃时,γ'开始发生定向粗化现象,其粗化方向与晶粒取向有关。 M951合金低周疲劳寿命随外加应变幅减小而显著增大,在应变幅相同的情况下,随温度降低而增大。M951合金700℃低周疲劳循环应力响应主要以循环硬化为主。900℃循环应力响应以循环软化为主。700℃低周疲劳变形以平面滑移为主,但变形不均匀,滑移带和晶界都对位错运动造成阻碍。900℃低周疲劳变形机制从平面滑移向波状滑移转变,位错随滑移带运动,在滑移带相交处密集缠结。 M951合金在相同试验温度下高周疲劳寿命随应力的增大而减小。700℃高周疲劳强度略高于900℃疲劳强度。700℃高周疲劳性能没有缺口敏感性,900℃时缺口敏感性也较小。900℃高周疲劳断口都呈现出脆性断裂的特征,且断口表面基本上垂直于应力轴;疲劳裂纹萌生于试样内部,随着应力幅的增加,裂纹源也由单个向多个转变。700℃在应力比较大时疲劳裂纹源产生于试样内部缺陷;当应力比较小时,裂纹萌生于试样表面或次表面。
其他摘要Investigation on effect of elements and mechanical properties of M951 alloy Zhou Pengjie (Materials Science) Supervised by Prof Sun Xiaofeng, Prof Guan Hengrong and Prof Yu Jinjiang In this dissertation, the role of boron, zirconium and yttrium on the microstructure and mechanical properties of M951 alloy are investigated. In addition, the creep and the stress rupture properties, as well as the low cycle fatigue and the high cycle fatigue of M951 alloy are studied. The main results are summarized as following: The stress rupture life of M951 alloy at 1100℃/40MPa is improved by adding an optimized amount of boron. The rupture life increases with increasing B content first, till 0.024%, then decreases. The tensile strength at 1000℃ drops with increasing B content, while the ductility improves. The boron segregates to grain boundaries, which facilitates the dislocation movement to the adjacent grain. As a consequence, the stress concentration there decreases, preventing the early microcrack initiation in grain boundaries. Finally it results in longer rupture life and decreased tensile strength. The impact toughness at room temperature can also be improved with the addition of boron. The flaky boride may form in the microstructure with excess boron doping. That is the origin of microcrack and deleterious to the mechanical properties. B depresses the incipient melting temperature and increases the volume fraction of γ/γ'eutectic. Adding an appropriate amount of zirconium not only improves the rupture life of M951 alloy at 1100℃/40MPa, but also increases the tensile strength and the ductility at 1000℃. Zr slightly depresses the impact toughness at room temperature. There are two remarkable modifications when Zr is added. Firstly, Zr inhibits the formation of Chinese script-like carbide in grains and changes the morphology of carbide from relatively continuous rod-like or platelet-like to discrete blocky morphology. Secondly, Zr increases the volume fraction of γ/γ'eutectic. The stress rupture life of M951 alloy at 1100℃/40MPa increases by Y doping. The optimum Y content is about 0.013%. Y improves high temperature tensile strength slightly and has insignificant effect on the ductility. The morphology of carbide can also be modified from continuous rod-like or flaky to the discrete blocky by the Y doping. The modification is beneficial to the mechanical properties. Y drastically increases the volume fraction of γ/γ'eutectic. In the Y-free alloy, the γ/γ'eutectic can be scarcely observed. The volume fraction of eutectic increases more significantly when both B and Y are added. The rise of eutectic volume fraction results in the increment of boride. After 1000h exposure at 850℃, a body-centered cubic Ni6Al2Y3 phase precipitates in the alloy with more than 0.03% Y doping. Zr and Y both possess large atomic radius and positive segregation coefficient. In the final stage of solidification, they are enriched in the residual liquid. It results in slower diffusion rate of alloying elements, aggravating the imbalance of elements in the mushy zone. This is apt to the formation of eutectic. In addition, these elements are strong carbide former, which modify the composition of primary MC carbide. This modification increases the lattice distortion, and results in the extra increment of system free energy, finally leads the carbide morphology to blocky, which has smaller free energy. At 700℃, the main deformation mechanisms of creep are dislocations shearing γ'precipitates forming twinning and formation of stacking faults. The morphology of γ'do not occur directional coarsening after long time creep, but changes to irregular morphology. At 900℃, dislocations move in the matrix channel, and are obstructed by the interface of γ/γ', forming dislocations tangles and dislocations networks. Only at the temperature over 900℃, γ'occurs directional coarsening, and its orientation depends on the character of grains. The life of low cycle fatigue increases with decreasing of the total strain range (△εt/2), increases with decreasing temperature. At 700℃, the low cycle fatigue of M951 alloy exhibits cyclic hardening. At 900℃, the stress response displays cyclic softening. The deformation mechanism of fatigue at 700℃ is mainly dislocation planar sliding, and its deformation is inhomogeneous. Both slip bands and grain boundaries impede the dislocation movement. At 900℃, the mechanism changes to wavy slip. Most of the dislocations move within slip band, and forms mass dislocation tangles when slip bands intersect. The high cycle fatigue life of smooth specimens at a certain temperature decreases with increasing stress. The fatigue strength at 700℃ is slightly higher than that of 900℃. M951 alloy exhibits no fatigue notch sensitivity at 700℃. The notch sensitivity at 900℃ is also low. All the fracture surfaces at 900℃ exhibit brittle fracture characteristic and the surface is perpendicular to the applied stress axis. The fatigue crack originates from inner of the specimen, in addition, the crack initiation site changes from single-site to multi-site with increasing stress. At 700℃, the fatigue crack initiates from the inner defects in specimen when the stress is high. If the stress is low, the crack starts from the surface and subsurface of specimens.
页数120
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17227
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
周鹏杰. M951合金成分作用及力学性能的研究[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[周鹏杰]的文章
百度学术
百度学术中相似的文章
[周鹏杰]的文章
必应学术
必应学术中相似的文章
[周鹏杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。