IMR OpenIR
高温合金的脉冲磁场与热控制一体化细晶铸造的研究
其他题名Fine grain casting by coupled pulsed magnetic field and thermal control for superalloy
马晓平
学位类型博士
导师杨院生
2009-12-26
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词脉冲磁场 热控制 凝固组织 晶粒细化 有限元计算 高温合金
摘要铸造高温合金在航空航天领域有重要用途,为提高铸造镍基高温合金综合力学性能尤其是疲劳性能,希望铸造组织为细小的等轴晶。而通常铸造高温合金却倾向于产生粗大的凝固组织,因此,高温合金细晶铸造工艺一直为高温合金研究的重点方向之一。近年来,材料电磁工艺的发展为实现该目标提供了新的方法。本论文利用脉冲磁场并结合控制凝固的热传递,对镍基高温合金的铸造组织细化进行了研究,研发了高温合金的脉冲磁场与热控制一体化细晶铸造工艺。论文对脉冲磁场作用下镍金属熔体中的电磁力场、流场等多物理场进行了数值模拟,实验研究了脉冲磁场的脉冲频率、励磁电压及脉冲磁场施加时间等参数对两种镍基高温合金K417及IN718的组织细化规律,并进一步研究了浇注温度及模具预热温度等热控制参数对脉冲磁场组织细化的影响,最后探讨了脉冲磁场与热控制一体化细化高温合金凝固组织的机理以及该工艺在高温合金薄壁件细晶铸造中的应用。 对脉冲磁场作用下的镍金属熔体,建立了有限元模型,利用ANSYS有限元软件一个脉冲磁场作用周期内的不同阶段进行了电磁场和流场等多物理场的数值模拟。模拟结果表明,脉冲磁场在熔体中产生周期性变化的磁场,该磁场在脉冲作用期较强,而在脉冲间歇期较弱。脉冲作用期间,在模壁附近的熔体中磁场的分布较强,而在熔体心部较弱。熔体中变化的磁场感生的电流与磁场交互作用产生电磁压力和电磁拉力,在脉冲期电磁力较强,而在脉冲间歇期电磁力较弱。缩短脉冲施加段的时间长度或者增加脉冲施加段的励磁电流会相应增强磁场及电磁力。 电磁拉力和电磁压力的轴向分力在熔体中引起对流,熔体流速在脉冲期增加,在脉冲间歇期减小。电磁拉力和电磁压力的径向分力在熔体中引起震动。在脉冲期,熔体中的感生电流产生的焦耳热主要集中在模壁附件的熔体中,存在集肤效应。 脉冲磁场对凝固组织影响的实验结果表明,利用脉冲磁场可以有效细化高温合金K417及IN718的凝固组织,在优化的电磁参数条件下获得约60μm的细小等轴晶组织。随着励磁电压的升高,凝固组织发生细化。随着脉冲频率的升高,凝固组织先发生细化,当脉冲频率增加到10Hz时,凝固组织又发生粗化。脉冲磁场的施加时间对组织细化有显著影响,随着脉冲磁场施加时间的延迟,凝固组织的细化效果逐渐弱化。 凝固过程中的热控制与脉冲磁场细化存在交互作用,实验结果表明当施加脉冲磁场时,需控制浇注温度和模具温度即热控制才能有效细化镍基高温合金凝固组织。在较低的浇注温度和较高的模具温度条件下,镍基高温合金凝固组织得到细化,而随着浇注温度的升高和模具温度的降低,脉冲磁场的细化效果减弱。对等截面和变截面的高温合金薄壁件的实验表明,采用脉冲磁场与热控制一体化细晶铸造,可使其凝固组织有效细化,获得约50μm的细小等轴晶组织。 通过筛网实验、模具更替实验及凝固测温实验对脉冲磁场与热控制一体化细晶铸造的机理进行探讨,认为脉冲磁场促发模壁处的晶核游离是关键细化机制。模壁处存在大的过冷度及大量形核有利位置激发的大量晶核在施加脉冲磁场引起的熔体震动和对流作用下脱落,并在熔体中均匀分布。另外,脉冲磁场引起的热效应延长模壁凝固壳的形成时间,进一步促进晶核游离。较高的模具温度可延缓凝固壳形成,起到增加晶核游离作用,较低的浇注温度可增加熔体中游离晶核的存活概率。熔体中大量存在的晶核导致最终形成细小的近胞状等轴晶组织。
其他摘要Casting superalloy is a crucial material for aerospace vehicle. In order to improve the mechanical properties of nickel based casting superalloy, especially its anti-fatigue property, fine equiaxed casting grains are expected. But the casting processing for superalloy tends to produce coarse microstructure. Thus, efficient fine grain casting processing for superalloy has aroused much research. Recent years, the electromagnetic processing of materials provides a new method for grain refinement. In this dissertation, fine grain casting processing for nickel based superalloy is researched by applying a pulsed magnetic field with controlling the heat transfer in solidification. The coupled physical field, electromagnetic force, melt flow and Joule heat, are simulated by FEM software ANSYS for nickel melt under the pulsed magnetic field. In experiments, the effect of frequency, exciting voltage and applying time of the pulsed magnetic field on the refinement is investigated, and the influence of pouring and mold temperature on refinement effect of pulsed magnetic field is researched. Finally, the refinement mechanism of the coupled pulsed magnetic field and thermal control is studied, and the pulsed magnetic field is applied to thin-wall casting of superalloy. The finite element model is established for the nickel melt under the pulsed magnetic field, the magnetic field and flow field are simulated in different stages of the pulse period by using ANSYS software. The results show that the pulsed magnetic field produces a periodic magnetic field which is stronger in the pulse stage compared with the pulse absent stage. In the pulse stage, the magnetic field concentrates near the surface of the melt. The variable magnetic field produces excited current which then reacts with the magnetic field and finally produces the electromagnetic force. The electromagnetic force is an alternate push and pull force which is stronger in the pulse stage compared with the pulse absent stage. The decrease of pulse stage time and the increase of exciting current can intensify the magnetic field and the magnetic force. The simulation results show that the component of the electromagnetic force in the axial direction produces convection in the melt. The velocity of the convection increases at the pulse stage but decreases at the pulse absent stage. The radial component of the electromagnetic force produces vibration in the melt. The excited current caused by the pulsed magnetic field produces Joule heat in the melt. Because of the skin effect of the excited current, the Joule heat concentrates in the melt near the surface of the mold. The experiment results show that the pulsed magnetic field can refine the solidified microstructures of superalloy K417 and IN718 greatly. The fine equiaxed grains about 60μm are obtained. More fine solidified grains are produced with the increase of exciting voltage and frequency of the pulsed magnetic field, but the grains are coarsed when the pulse frequency increases to 10Hz. The applying time of the pulsed magnetic field significantly influence the refinement effect. The refinement effect of the pulsed magnetic field becomes weak if the applying time is delayed. Thermal control and the pulsed magnetic field have interaction on grain refinement of the superalloys, which means that pouring temperature and mold temperature should been controlled. The solidified microstructure is refined by the pulsed magnetic field with low pouring temperature and high mold temperature. As the increase of pouring temperature and decrease of mold temperature, the refinement effect of the pulsed magnetic field is impaired. The fine grain casting is achieved for a thin-wall casting with different thickness by coupled the pulsed magnetic field and thermal control, and the size of refined equiaxed grains is about 50μm. The experiments of solidification with a stainless sieve and different mold are carried out to explain the refinement mechanism of coupled the pulsed magnetic field and thermal control. The detachment mechanism of heterogeneous nuclei from the mold wall is proposed for the refinement effect of pulsed magnetic field. Because of large undercooling and much nucleation position, abundant nuclei are produced on the mold wall. The melt vibration produced by the pulsed magnetic field will promote the nuclei to detach from the mold wall, and then the nuclei can be dispersed uniformly in the whole melt by the melt convection produced by the pulsed magnetic field. The Joule heat and the skin effect by the pulsed magnetic field will prolong the formation time of the solidified shell near the mold wall, which promotes the detachment of nuclei from the mold wall. Higher mold temperature can defer the formation of the solidified shell, which is beneficial to the detachment of nuclei, and lower pouring temperature can increase the survival probability of the detached nuclei in the melt. Finally, the copious nuclei in the melt grow to the fine equiaxed grains.
页数124
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17235
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
马晓平. 高温合金的脉冲磁场与热控制一体化细晶铸造的研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[马晓平]的文章
百度学术
百度学术中相似的文章
[马晓平]的文章
必应学术
必应学术中相似的文章
[马晓平]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。