IMR OpenIR
NiAl 合金化及定向凝固工艺研究
其他题名Effects of Alloying and Directional Solidification on the Microstructures and Mechanical Properties of NiAl alloys
谢亿
学位类型博士
导师叶恒强
2009-05-21
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词Nial 合金化 定向凝固工艺 微观组织 力学性能
摘要有序金属间化合物NiAl具有高的熔点(Tm=1921 K),比高温合金更低的密度(5.9 g/cm3),高达6 W/m•K的热导率以及良好的高温抗氧化性能,被认为是一种潜在的高温结构替代材料。然而,室温塑性差和高温强度低这两大缺陷阻碍了NiAl的实用化进程。为此,材料工作者做了很多努力。合金化和定向凝固工艺是有效提高材料性能的两种手段,因此,本文采用宏合金化、微合金化以及定向凝固工艺(液态金属冷却 LMC 技术)制备了不同成分的NiAl合金,借助X射线衍射、扫描电子显微镜、透视电子显微镜、Gleeble1500以及三点弯曲实验等分析测试手段,系统研究了NiAl合金的微观组织和力学性能。 多相NiAl合金Ni-26.6Al-13.4Cr-8.1Co-4.3Ti-1.3W-0.9Mo (at. %)由铝块和K444高温合金真空感应熔炼而成。研究表明该多相合金在铸态下由NiAl基体和低熔点脆性相Cr3Ni2组成,还含有少量的α-W颗粒,大部分Cr3Ni2相沿NiAl基体晶界呈网状分布。接下来的固溶处理和时效处理导致合金微观组织的变化。在1523K固溶处理20h后,Cr3Ni2相发生部分回溶。水淬所带来的快的冷却速度导致裂纹在试样内出现,裂纹萌生于Cr3Ni2相,并沿着Cr3Ni2相扩展。而空冷试样中没有裂纹出现。炉冷冷却速度较慢,其试样中有针状Ni3Al相和α-Cr颗粒析出。1123 K时效处理16h后,针状Ni3Al相和细小弥散的α-Cr颗粒从NiAl基体中析出。Ni3Al相与NiAl基体之间存在N-W晶体学位相关系:[00 ]β∥[ 10]γ′,(110)β∥(111)γ′。增韧相Ni3Al的析出导致多相NiAl合金在时效态下具有最佳的室温力学性能,但由于高温下Ni3Al相的强化效果不明显,时效态合金的性能与铸态相差无几。长期时效过程中,Ni3Al析出相变成短棒状,发生了分解,数量减少,导致其室温力学性能降低,α-Cr颗粒粗化,导致其高温下的压缩强度较铸态和时效态略有提高。 Sc在NiAl二元合金中的固溶度为0.05~0.06 at. %,过量的Sc会生成富Sc相。Sc的合金化能提高NiAl二元合金的强度和硬度。JJ3合金中,当Sc的添加量不超过0.1 wt. %时,合金的共晶胞胞界距和胞内的NiAl/Cr(Mo)层间距随Sc含量的增加而减少,组织细化;当Sc的添加量超过0.1 wt. %时,原典型的共晶胞结构被破坏,取而代之的是破碎粗化的Cr(Mo)相镶嵌在NiAl基体中。添加0.1 wt. % Sc的JJ3合金具有最佳的室温压缩性能,室温压缩塑性达到35.1 %,最大压缩应力超过1600 MPa,较之Sc含量为零的合金分别提高了69.6 %和15.7 %。JJ3合金的最佳Sc添加量为0.1 wt. %。Sc对JJ3合金的高温压缩性能影响很少。 通过液态金属冷却技术(LMC)和传统的定向凝固技术(HRS)制备了一名义成分为Ni-33Al-31Cr-2.9Mo-0.1Hf-0.05Ho(at. %)的亚共晶合金。合金由初生NiAl枝晶,NiAl/Cr(Mo)共晶胞和Hf固溶体组成。微量元素Hf、Ho的添加改变了合金的共晶共生区,导致了初生NiAl枝晶的出现。随着抽拉速度从3 mm/min提高到15 mm/min,LMC工艺制备合金中的初生NiAl枝晶由21.1%增加到25.9%。同时,合金的初生NiAl一次枝晶的间距,初生NiAl枝晶和NiAl/Cr(Mo)共晶胞的尺寸减少。LMC工艺制备合金的室温和高温拉伸性能,以及室温断裂韧度值均在中速抽拉速度(8 mm/min)时出现最小值。与HRS工艺相比, LMC工艺能提高固液前沿温度梯度和冷却速度。高的固液前沿温度梯度能扩大NiAl/Cr(Mo)共晶共生区成分范围,减少初生NiAl枝晶的体积。而高的冷却速度抑制固溶元素扩散,细化合金的组织,包括初生NiAl一次枝晶的间距,初生NiAl枝晶和NiAl/Cr(Mo)共晶胞的尺寸,同时减少合金与Al2O3-SiO2陶瓷模壳的反应时间。另外,LMC工艺能避免HRS工艺中产生的生长缺陷,包括斑点、NiAl一次枝晶的偏转和NiAl一次枝晶的不连续。LMC工艺所带来的微观组织优化能全面提高合金在室温和高温下的拉伸力学性能。 调整合金的成分为Ni-30.4Al-34Cr-4.3Mo-0.1Hf-0.05Ho(at. %)后,LMC定向凝固合金消除了初生相。该定向合金的室温、高温拉伸强度,以及室温断裂韧度较之铸态均得到改善,并随着抽拉速度的增大而提高。与名义成分为Ni-33Al-31Cr-2.9Mo-0.1Hf-0.05Ho的亚共晶合金相比,该共晶合金在抽拉速度为8 mm/min和15 mm/min时的室、高温拉伸强度提高了50 %以上,断裂韧度提高不多,而高温拉伸塑性则急剧降低,1253K和1373 K下共晶合金的拉伸塑性不到亚共晶合金的25 %。
其他摘要The ordered intermetallic compound NiAl has been paid more attention to as a potential candidate for high temperature structural utilizations because of its high melting point (Tm=1921 K), substantially lower density (5.9 g/cm3) than commercial Ni-based superalloys (about 8 g/cm3), high thermal conductivity (above 6 W/m•K), and excellent oxidation resistance at temperature above 1273 K. However, the industrial applications of NiAl alloy are limited by two major drawbacks. One is poor strength and creep resistance at high temperature; the other one is the serious scarcity in fracture toughness and ductility at room temperature. Therefore, much effort has been devoted to solve the above two problems. It has been established that alloying and directional solidification are effective ways to improve mechanical proverties of intermetallics. So the paper systematically investigate the effects of alloying and directional solidification on microstructure and mechanical properties of NiAl alloys by means of X-ray diffaction, scanning electron microscope and transmission electron microscope,etc. The multi-phases NiAl alloy with nominal composition Ni-26.6Al-13.4Cr-8.1Co- -4.3Ti-1.3W-0.9Mo (at. %) was fabricated from superalloy K444 and Al element using vacuum induction and casting technique. Investigations to this alloy reveal that a new phase Cr3Ni2 possessing low melting point and poor ductility is formed, which is distributed as a network along NiAl matrix grain boundaries. Subsequent solution are carried out and lead to microstructural changes to various extents, such as the partial dissolve of Cr3Ni2 phase. Rapid cooling (water quenching) after solution at1523 K for 20 hours gives rise to macrocracks in the specimen while slow cooling (furnace cooling) after the same treatment results in the formation of spheric α-Cr solid solution (d, 300-1000 nm) and needle-like Ni3Al phase (l, the order of 1μm), which are embedded in NiAl matrix. During aging treatment, needle-like Ni3Al (l, the order of 10 μm) and small spherical α-Cr particles were precipitated from NiAl matrix which owns orientation relationships with these precipitates such as [00 ]β∥[ 10]γ′ and (110)β∥(111)γ′. The multi-phases NiAl alloy after aging treatment possessed the perfect combination of compression properties and fracture toughness at room temperature due to the dissolution of brittle Cr3Ni2 phase network and the precipitation of ductile Ni3Al phase. Then the long-term aging exposure resulted in the dissolution of the Ni3Al precipitates which worsen the room temperature mechanical properties and the coarsening of α-Cr particles that improved the compressive strength at 1273 K. The effect of Sc addition on the microstructure and mechanical properties of cast NiAl and NiAl-Cr(Mo)-0.15Hf alloys was studied. The solid solubility of Sc in NiAl alloy is about 0.05-0.06 (at. %). A Sc-rich second phase precipitates in the NiAl alloys doped with more than 0.10 wt. % Sc. The strength and microhardness of NiAl alloys increase with increasing Sc content. As for the NiAl-Cr(Mo)-0.15Hf alloy, the interlamellar spacing and the intercellular spacing decrease with the increasing Sc content when the additional Sc content is less than 0.1 wt. %. The microstructural refinement leads to the improvement of room temperature compressive properties. Excess Sc breaks the typical NiAl/Cr(Mo) eutectic cell structure and plays a decisive role on the deterioration of compressive properties at room temperature. NiAl-Cr(Mo)-0.15Hf alloy doped with 0.10 wt. % Sc possesses the best ductility of about 35% and the highest compressive stress of 1600 MPa at room temperature. Therefore, 0.10 wt. % Sc addition is speculated as the appropriate amount to improve the room temperature ductility of NiAl-Cr(Mo)-0.15Hf alloy. However, the positive effect of Sc addition is negligible at 1273 K. The hypoeutectic alloy with nominal composition NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho (at. %) was directionally solidified at three different withdrawal rates by liquid metal (Sn) cooling (LMC) process and conventional radiation solidification process (HRS) in order to choose appropriate withdrawal rate and assess the benefits of liquid metal cooling technique. The hypoeutectic alloy is composed of primary NiAl, NiAl/Cr(Mo) eutectic cell and Hfss. Additional trace elements Hf and Ho led to the appearance of primary NiAl. Moreover, the volume fraction of primary dendritic NiAl increases from 21.1% to 25.9% with increasing withdrawal rate from 3 mm/min to 15 mm/min. In view of the increasing withdrawal rates, the microstructures including the NiAl primary dendrites become fine. The longitudinal tensile strength at RT and 1373 K and RT fracture toughness presents a low value in the DS alloy at 8 mm/min withdrawal rate. Compared by HRS process, LMC process can provide higher thermal gradient and higher cooling rate, which results in the microstructural improvement and the capability for faster withdrawal rate. The higher gradient widens the composition range of coupled zone, therefore, decreases the volume fraction of primary dendritic NiAl. The higher cooling rate restrains the diffusion and promotes refinement of the microstructures including the size of NiAl/Cr(Mo) eutectic cell, the size of primary dendritic NiAl and the arm spacing of the primary dendritic NiAl. The content of contaminative element from the metal-mold reaction also decreases in LMC process. In addition, casting defects such as freckles, misoriented primary dendritic NiAl grains and discontinuity of primary dendritic NiAl grains decrease or even totally disappear in the DS alloy processed by LMC. The microstructural improvement caused by LMC process leads to the improvement of the tensile properties both at room temperature and high temperature. Moreover, the alloy processed by LMC grown at the fastest rate possesses the best tensile properties. To inhibitate the primary NiAl, the compostion was adjusted as Ni-30.4Al-34Cr-4.3 Mo-0.1Hf-0.05Ho(at. %). The eutectic DS alloy processed by LMC is composed of NiAl/Cr(Mo) eutectic cell and a spot of Hfss. In virtue of the disappearance of primary dendritic phase, the mechanical properties of DS alloys were better than that of as-cast alloy and improved with increasing withdrawal rate from 8 mm/min to 15 mm/min. Compared to the unadjusted hypoeutectic DS alloy with nominal composition NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho (at. %), the eutectic DS alloys possess optimized microstructures and better mechanical properties except high temperature tensile ductibility because of the disappearance of primary dendritic NiAl.
页数110
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17240
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
谢亿. NiAl 合金化及定向凝固工艺研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[谢亿]的文章
百度学术
百度学术中相似的文章
[谢亿]的文章
必应学术
必应学术中相似的文章
[谢亿]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。