IMR OpenIR
锂镁硼氢体系的储氢性能研究
王佩君
学位类型硕士
导师王平
2009-05-27
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词储氢 硼氢化锂 氢化镁 单壁纳米碳管 三氟化钛
摘要随着全球能源、气候、环境等问题的加剧,加速氢经济的发展被公认为是解决上述问题的有效办法。氢能的开发利用包括氢气的制备、储运和应用,而高效、安全储运氢被公认为是制约氢能规模化应用的“瓶颈”。近几十年来,围绕发展高性能储氢材料已开展了大量研究工作。氢源丰富的含硼化合物,特别是近年来轻金属配位氢化物与金属氢化物的复合体系因具有很高的储氢容量(例如Li-Mg-B-H体系的储氢重量密度高达11.8 wt.%)以及较好的可逆性而成为研究热点。然而,其较高的操作温度和缓慢的放氢动力学限制了进一步的应用。目前该体系研究重点是:通过构建纳米复合体系降低吸/放氢温度、提高反应动力学。单壁纳米碳管(Single-walled carbon nanotubes, SWNTs)具有新奇的准一维纳米结构和独特的电子结构特征;三氟化钛(TiF3)兼具高价钛和活性阴离子氟。本论文工作尝试分别将SWNTs和TiF3作为添加剂制备多相纳米复合材料,用来改善Li-Mg-B-H体系的吸/放氢性能。 本论文工作应用体积法储氢测试装置系统研究了球磨制备的锂镁硼氢/单壁纳米碳管(Li-Mg-B-H/SWNTs)、锂镁硼氢/三氟化钛 (Li-Mg-B-H/TiF3)复合材料体系的吸/放氢性能,并在结合物相/微观结构表征的基础上探讨了体系的催化机理,在提高体系储/放氢性能和深化催化机制认识方面取得了积极进展。 1. Li-Mg-B-H/SWNTs复合材料的制备、结构与性能研究 将不同配比的LiBH4-MgH2/SWNTs在氩气保护气氛下机械球磨1小时,随后测定其储氢性能以确定最佳制备条件。研究发现:加入10 wt.% SWNTs并经球磨1 h制得样品的储氢性能最佳。在450℃下,该材料在20 min内放氢达10 wt.%,放氢速度比没有加SWNTs的材料提高了2倍。而且体系的循环衰减也有了显著的改善——第二次循环的放氢量比原来提高了20%。结合X射线衍射(XRD)分析表明:制备的单壁碳纳米管中的镍纳米颗粒对于复合材料的放氢是有害的。在放氢过程中形成的MgNi2.5B2三元相影响了体系的放氢动力学和循环稳定性;而性能的提升来源于单壁碳纳米管独特的准一维纳米结构所形成的“局域化”效应。 2. Li-Mg-B-H/TiF3复合材料的制备、结构与性能研究 将不同配比的LiH-MgB2/TiF3在氩气保护气氛下机械球磨5小时,随后在不同温度下测定其储氢性能以确定最佳制备条件。研究发现:加入1 mol%TiF3并经球磨5小时制得样品的储氢性能最佳。在400℃下,该材料可在25 min内放氢8 wt.%。同时,仍然维持较高的循环稳定性(五次循环后仍能放出总放氢量的95%)。基于X射线衍射(XRD)和X射线光电子能谱(XPS)分析,并结合性能对比实验发现,这种热力学和动力学性能的改善与Ti阳离子和F阴离子的共同作用有关。前者形成了TiH2的纳米相,而F离子的状态目前还无法确认,但进一步XPS的分析结果在实验上验证了此前提出的“功能性阴离子”的观点。为改善配位氢化物的储氢性能揭示了一条新途径。 上述研究结果加深了对Li-Mg-B-H体系的认识,提高了其储氢性能,并可为探索其它高容量配位金属氢化物提供借鉴和指导。
其他摘要Hydrogen economy is being promoted as a solution to the world’s energy, climate and environmental problems. Commerialization of hydrogen energy involves mass production, storage/transportation and utilization of hydrogen, among which the intermediate “hydrogen storage” step is generally recognized as the “bottle neck”. After decades of extensive research, the hydrogen-rich boron-containing compounds have received extensive attention as potential hydrogen storage media for vehicular applications. Recently, reactive hydride composites (known as Li-Mg-B-H) have been attracting considerable interest as a viable hydrogen storage medium due to its extremely high H-capacity (with a theoretical value of 11.8 wt.%) and relatively good reversibility. However, its commercial application has been largely hindered by its high operation temperature and sluggish sorption kinetics. A recent main strategy used to address these problems is preparation of nano-structured composite. Single–walled carbon nanotube (SWNT) is characterized by its novel one-dimensional nano-structure and unique electronic structure; TiF3 provides a source of both high valence Ti cation and active F anion. The present work focuses on utilization of these two novel materials in catalytically enhancing absorption/desorption processes of Li-Mg-B-H system. In this thesis work, the hydrogen storage properties of mechanically prepared Li-Mg-B-H/SWNTs and Li-Mg-B-H/TiF3 composites were systematically investigated by using a self-made Sievelt’s apparatus, which allows a simultaneous and precise collection of pressure and temperature signals. Furthermore, the catalytic mechanism involved in the reversible absorption/desorption processes was investigated on the basis of combined property/phase/microstructure investigations. 1. Preparation, structure and property of Li-Mg-B-H/SWNTs composite LiBH4 and MgH2 (2:1 mole ratio) were mechanically milled with different amounts of SWNTs for 1 h under argon atmosphere,and hydrogen storage performance of thus-prepared Li-Mg-B-H/SWNTs composite was examined. It was found that the hydrogen sorption capacity and sorption kinetics of the composites were dependent on the addition amount of SWNTs. An optimal property was obtained when using 10 wt.% SWNTs. At 450℃, the composite can desorb 10 wt.% in 20 min. The dehydriding rate was 2 times faster than that of neat composite, and capacity penalty was alleviated by about 20%. Combined X-ray diffraction (XRD) analysis and a series of designed experiments indicate that Ni powder that in situ incorporated into as-prepared SWNTs exerts negative effect on the host material. It formed a new phase of MgNi2.5B2, which is stable in the subsequent reactions, and is responsible for the observed kinetic degradation. Then this property improvement completely came from the special qusi-one dimensional structured SWNTs, which forms net-like structure and exerts micro-confinement effect on the host material. 2. Preparation, structure and property of Li-Mg-B-H/TiF3 composite Hydrogen storage performances of Li-Mg-B-H/TiF3 were investigated. It was found that hydrogen desorption kinetics of Li-Mg-B-H can be markedly improved by mechanical milling with 1mol% TiF3 addtive for 5 h. At 400℃, it can desorb 8 wt.% hydrogen within 25 min and still maintain over 95% of the total H-capacity during the subsequent dehydrogenation/rehydrogenation cycles. Based on the X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy analysis as well as compared experiments, this thermodynamic and kinetic improvement was ascribed to both Ti cation and F anion. The former is stabilized as catalytically active TiH2 nanophase, whereas the state and function of F anion are still unclear. This result further experimentally demonstrates the previously point of “functional anion”, and provide a new way in tailoring the hydrogen storage performance of reactive hydride composites. The above results help to further understand Li-Mg-B-H system, improve its hydrogen storage properties and provide reference and instruction on exploring other high H-capacity complex hydride.
页数75
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17262
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
王佩君. 锂镁硼氢体系的储氢性能研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王佩君]的文章
百度学术
百度学术中相似的文章
[王佩君]的文章
必应学术
必应学术中相似的文章
[王佩君]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。