IMR OpenIR
反钙钛矿型化合物Ti3AlC的合成与性能
其他题名Synthesis and Properties of Antiperovskite Compound Ti3AlC
张小文
学位类型硕士
导师包亦望
2009-05-23
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词反钙钛矿型化合物 Ti3alc 原位反应/热压合成 力学性能
摘要反钙钛矿型化合物由于具有超导性、接近于零的电阻温度系数、巨磁电阻等物理性能而受到了材料研究者的广泛关注。Ti3AlC是Ti-Al-C体系中唯一的一种反钙钛矿型化合物,它可能同时具有良好的力学性能和物理性能,从而成为一种新型的结构/功能材料。由于在样品制备方面存在巨大的困难,目前关于Ti3AlC的性能的报道非常少。因此,制备纯度高、致密的Ti3AlC块体材料并系统地研究其力学和物理性能,对认识反钙钛矿型化合物、开发新的结构/功能材料具有非常重要的意义。 本论文利用原位反应/热压合成的方法制备了纯度高、致密的Ti3AlC块体材料;研究了Ti3AlC的力学和物理性能。主要工作和结论是: 1,以钛、铝和石墨粉末为原料,利用原位反应/热压合成的方法制备了致密的Ti3AlC块体材料;研究了原料成分、烧结温度等对产物相组成的影响;讨论了生成Ti3AlC的反应路径。研究表明,利用摩尔比为3 : 1 : 0.8的钛、铝和石墨粉末,在1550 oC下保温2小时,同时施加30 MPa的压力,可以制备含TiC为2.68 wt%的致密块体材料。 2,利用SEM、TEM等对制备的样品进行了显微结构表征。Ti3AlC的晶粒形貌为等轴晶,平均晶粒尺寸大约为24 μm。TEM研究表明在Ti3AlC的晶界上没有非晶相。 3,系统研究了Ti3AlC的力学性能。室温下,Ti3AlC的维氏硬度、弯曲强度、压缩强度、断裂韧性分别为7.8 GPa、182 MPa、708 MPa、2.6 MPa•m1/2。Ti3AlC的断裂模式主要为穿晶断裂。维氏硬度压痕和断口分析表明Ti3AlC是一种脆性材料。室温下,Ti3AlC的杨氏模量、体模量、剪切模量、泊松比分别为209 GPa、140 GPa、83 GPa、0.25。Ti3AlC的杨氏模量随温度的升高而下降,在1210 oC Ti3AlC的杨氏模量为170 GPa。 4,初步研究了Ti3AlC的热膨胀系数、摩尔热容、热导以及室温下的电阻率等物理性能。实验结果表明,在150–1200 oC范围内,Ti3AlC升温和降温的平均热膨胀系数为10.1×10-6。 Ti3AlC的热容和热导随温度的升高而升高,在300 K和1373 K, Ti3AlC的摩尔热容分别为87和143 J•(mol•K)-1,热导分别为8.19和15.6 W•(m•K)-1。室温下,Ti3AlC的电阻率为1.55 μΩ•m。
其他摘要The antiperovskite compounds have attracted extensive attention due to their possession of many interesting physical properties such as superconductivity, nearly zero temperature coefficient of resistivity, giant magnetoresistance, etc. Ti3AlC is the only one antiperovskite compound in the Ti-Al-C system and it may combine interesting physical properties and good mechanical properties which endow it the potential applications as functional/structural materials. However, there are very limited reports on the properties of Ti3AlC because of the difficulty in preparing pure and dense samples. Thus, the preparation of pure and dense bulk Ti3AlC and systematic investigation of its mechanical and physical properties become significantly important, which will improve our understanding of the antiperovskite compounds, as well as facilitate the design of structural/functional materials. In this paper, dense bulk Ti3AlC was prepared by an in-situ reaction/hot pressing method; the mechanical and physical properties were measured. The main work and conclusions are as follows: (1) Dense bulk Ti3AlC containing about 2.68 wt% of TiC was prepared by an in-situ reaction/hot pressing method using Ti, Al, and graphite as starting materials. The influences of sintering temperature and starting material compositions on the phase compositions of the products were investigated. The possible reaction route was proposed. (2) The microstructure was characterized by SEM and TEM. SEM observation revealed the equiaxed morphology of the Ti3AlC grains and the average diameter of the grains was about 24 μm. The TEM investigation showed that there were no amorphous phases at the grain boundary. (3) The mechanical properties of Ti3AlC were measured using the as-prepared samples. At room temperature, its Vickers hardness, bending strength, compressive strength, and fracture toughness were 7.8 GPa, 182 MPa, 708 MPa, and 2.6 MPa•m1/2, respectively. The fracture mode of Ti3AlC was transgranular. Both the Vickers indentation and fracture surface confirmed the brittleness of Ti3AlC. The Young’s modulus, bulk modulus, shear modulus and Possion’s ratio were 209 GPa, 140 GPa, 83 GPa and 0.25, respectively. The Young’s modulus decreased with the increase of temperature and at 1210oC, the remaining value was about 170 GPa. (4) Physical properties such as coefficient of thermal expansion, molar heat capacity, thermal conductivity and electrical resistivity at room temperature were investigated. The coefficient of thermal expansion of Ti3AlC between 150 and 1200oC was 10.1×10-6 k-1. Both the molar heat capacity and thermal conductivity increased with temperature. At 300 and 1373 K, the molar heat capacity of Ti3AlC were 87 and 143 J•(mol•K)-1, and the thermal conductivity were 8.19 and 15.6 W•(m•K)-1, respectively. The electrical resistivity of Ti3AlC at room temperature was about 1.55 μΩ•m.
页数79
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17267
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
张小文. 反钙钛矿型化合物Ti3AlC的合成与性能[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张小文]的文章
百度学术
百度学术中相似的文章
[张小文]的文章
必应学术
必应学术中相似的文章
[张小文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。