4D imaging of void nucleation, growth, and coalescence from large and small inclusions in steel under tensile deformation | |
Guo, Yi1,2; Burnett, Timothy L.1,2; McDonald, Samuel A.1,2,3; Daly, Michael1,2; Sherry, Andrew H.4; Withers, Philip J.1,2 | |
通讯作者 | Guo, Yi(yguo@imr.ac.cn) |
2022-10-01 | |
发表期刊 | JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
![]() |
ISSN | 1005-0302 |
卷号 | 123页码:168-176 |
摘要 | Samples of SA508 grade 3 nuclear pressure vessel ferritic steel were subjected to tensile straining whilst being simultaneously imaged in 3D in real time using high resolution, high frame rate time-lapse synchrotron computed tomography (CT). This enabled direct observation of void development from nucleation, through growth to coalescence and final failure validating many inferences made post-mortem or by theoretical models, as well as raising new points. The sparse, large inclusions were found to nucleate voids at essentially zero plastic strain (consistent with zero interfacial strength); these became increasingly elongated with straining. In contrast, a high density of small spherical voids were found to nucleate from the sub-micron cementite particles at larger strains ( > 200%) only in the centre of the necked (high triaxiality) region. An interfacial strength approaching 2100 MPa was inferred and soon after their nucleation, these small voids coalesce to form internal microcracks that lead to the final failure of the specimen. Perhaps surprisingly, under these conditions of generally low triaxial constraint the large voids are simply cut across and appear to play no significant role in determining the final failure. The implications of these results are discussed in terms of ductile fracture behaviour and the Gurson model for ductile fracture. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. |
关键词 | Void growth Ductile fracture Synchrotron X-ray tomography 4D imaging Bainitic steel |
资助者 | European Research Council Grant (COREL-CT) ; EPSRC ; Institute of Metal Research ; National Science Fund for Distinguished Young Scholars ; National Science and Technology Major Project |
DOI | 10.1016/j.jmst.2022.01.024 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | European Research Council Grant (COREL-CT)[695638] ; EPSRC[EP/R00661X/1] ; EPSRC[EP/S019367/1] ; EPSRC[EP/P025021/1] ; EPSRC[EP/P025498/1] ; Institute of Metal Research ; National Science Fund for Distinguished Young Scholars[5172510] ; National Science and Technology Major Project[J2019-VI-0019-0134] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000788132100008 |
出版者 | JOURNAL MATER SCI TECHNOL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/172684 |
专题 | 中国科学院金属研究所 |
通讯作者 | Guo, Yi |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Univ Manchester, Dept Mat, Henry Royce Inst, Manchester M13 9PL, Lancs, England 3.European Synchrotron Radiat Facil ESRF, 6 Rue J Horowitz, F-38000 Grenoble, France 4.Natl Nucl Lab, Chadwick House,Birchwood Pk, Warrington WA3 6AE, Cheshire, England |
推荐引用方式 GB/T 7714 | Guo, Yi,Burnett, Timothy L.,McDonald, Samuel A.,et al. 4D imaging of void nucleation, growth, and coalescence from large and small inclusions in steel under tensile deformation[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2022,123:168-176. |
APA | Guo, Yi,Burnett, Timothy L.,McDonald, Samuel A.,Daly, Michael,Sherry, Andrew H.,&Withers, Philip J..(2022).4D imaging of void nucleation, growth, and coalescence from large and small inclusions in steel under tensile deformation.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,123,168-176. |
MLA | Guo, Yi,et al."4D imaging of void nucleation, growth, and coalescence from large and small inclusions in steel under tensile deformation".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 123(2022):168-176. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论