IMR OpenIR
TC18钛合金在等温和连续冷却过程中的相变
其他题名The research of phase transformation dynamics in TC18 titanium alloy during isothermal holding and continuous cooling
赵炎
学位类型硕士
导师刘羽寅
2009-05-29
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词Tc18钛合金 亚稳β相 Gleebe-3800热模拟机 等温转变曲线 连续冷却转变曲线
摘要本文系统的研究了TC18钛合金中的亚稳β相在等温和连续冷却过程中的演化规律,最终确定了TC18钛合金的等温转变曲线和连续冷却转变曲线。 TC18钛合金是一种典型的过渡型α+β合金,其名义成分为Ti-5Al-5Mo-5V-1Cr-1Fe,Kβ为1.176。这种类型合金具有高度的组织不均匀性(由于α相和β相在组织中的量大致相同并有高度弥散性),最大的强化处理效应以及相当大的可淬透性。本文采用Gleebe-3800热模拟机,系统的研究了TC18钛合金中亚稳β相的等温转变过程以及连续冷却转变过程,利用X射线、光学显微镜、扫描电镜以及透射电镜对亚稳β相转变组织进行鉴定与观察,初步建立了不同温度保温及不同冷却速率下,亚稳β相的转变机制;根据膨胀量-时间曲线,作出了等温转变曲线(TTT曲线)及连续冷却转变曲线(CCT曲线)。 等温转变曲线的研究表明,在相变点以下的温度保温,亚稳β相非常不稳定,迅速发生分解。转变温度分为3个区域,500℃至相变点的温度范围内,片层状的α相直接从基体中析出,弥散的分布在β基体上。时效温度降低,片层的厚度减小。X射线衍射分析表明随着时效温度的降低,析出的α相含量先增加后降低。450℃-350℃的范围内,溶质原子的扩散受到抑制,此时亚稳β相先转变为ω相,随着时效时间的延长,α相以先析出的ω相为核心生长,最终形成团簇状的形貌。在200℃-300℃的范围内,即使保温时间达到100小时,仍然只存在ω相,并没有向α相转变的趋势。膨胀量-时间曲线表明TTT曲线的鼻尖温度为600℃左右,该温度下,β→α转变的孕育期最短,为16s,转变终了的时间为16min。 连续冷却转变曲线的研究表明,在相当低的冷却速率范围内可以获得残留β相以及片层状α相;随着冷却速率的升高,析出的α相的数量逐渐减少,片层细化;当冷却速率增大(大于1℃/s)时,α相呈团簇状析出;水淬时高温β相组织可被100%保留。冷速慢时,首先α相核心在晶界处形成,随着冷却的进行,α相核心生长形成晶界连续α相,并出现晶界魏氏体组织,与此同时,晶内α相开始形核生长,当冷却到较低的温度时,α相长大受到抑制,但随着冷却的进行,晶内残留β相仍将继续分解,在晶内空隙处析出非常细小的魏氏体组织。在本文控温冷却的条件下,在亚稳态的β基体中只有α相析出。随着冷却速率增大,析出的α相含量由68%下降到10%左右。空冷时,β相几乎被完全保留。膨胀量-时间变化曲线表明,随着冷却速率的增加,相变开始和终了的温度降低。冷却速率为0.1℃/s时的样品中亚稳β相发生转变的开始温度在650℃左右发生,560℃时相变基本结束;冷却速率为0.2℃/s时的样品中亚稳β相发生转变的开始温度在640℃左右,510℃时相变基本结束;冷却速率为0.5℃/s时的样品中亚稳β相发生转变的开始温度在620℃左右,450℃时相变基本结束;冷却速率为0.7℃/s时的样品中亚稳β相发生转变的开始温度在615℃左右,400℃时相变基本结束;当样品的冷却速率达到1℃/s以上时,从膨胀量时间曲线上看不出拐点,这是由于析出的α相数量太少,样品的膨胀量的突变不明显,但可以推测亚稳β相开始转变的温度将会进一步的降低。
其他摘要The phase transformations of Ti-5Al-5Mo-5V-1Cr-1Fe(TC-18) have been studied during isothermal holding and continuous cooling after β-solution treatment. For this purpose, dilatometer measurements and metallographical examinations have been carried out, and the temperature time transformation diagram and continuous cooling transformation diagram of TC18 alloy have been plotted. The Ti-5Al-5Mo-5V-1Cr-1Fe(TC18) alloy is a typical metastable α+β alloy, which is designed to provide a wide variety of mechanical properties and microstructures, depending on thermomechanical processing. The dilatometric analysis of TC18 titanium alloy was tested on Gleebe-3800, according to which, the transformation of metastable β phase was studied, the temperature time transformation diagram and continuous cooling transformation diagram of TC18 alloy have also been plotted. X-ray is used to analyze the phase composition. SEM and TEM techniques are applied to observe the microstructures and transformation characters. In the study of TTT diagram, the results show that single metastable β phase is obtained after quenching from β phase region. But the metastable β phase is quite unstable under the β transus. The temperature of α phase precipitation from β matrix consists of three parts. At high holding temperature (from 500℃ to the β transus), α phase directly precipitates form β matrix as lamellar structure. At lower aging temperatures (from 350℃ to 450℃), metastable β transform into ω phase firstly, and then fine α precipitates from ω phase. Below 300℃, no α phase was observed even after isothermal holding for 100h. The percentage of α phase firstly increases with aging temperature dropping, and reaches 70% at 550℃, and then decreases. Microstructure does not change with increasing isothermal holding times after phase gets stable. The dilatometer-time curve presents that the nose of TTT curve is at 600℃, the β phase is mostly unstable under this temperature, phase transformation starts at 16s, and end at 16min. The different kinds of β-phase decomposition schemes in TC18 alloy during continuous cooling have been investigated in detail. Two main morphological features of the α/β structure are involved, depending on the cooling rate, the lamellar structure and the colony structures are observed for low and high cooling rates. Finally, a generalized scheme of the β→β+α transformation sequences during continuous cooling is presented. α phase nucleates at grain boundaries and develops in a continuous layer or in allotriomorph precipitates at the grain boundaries(termed αGB). From these intergranular nucleation sites, Widmanstatten α phase grows as laths toward the inside of the β matrix, resulting in a colony structure(termed αWGB). Then fine plates of α phase precipitates in intragranular area because the intergranular precipitation sites being already occupied by αGB and αWGB. Of all cooling conditions in the experiments, only α phase precipitates from the β matrix, the percentage of α phase increases with cooling speed dropping, reaches 10% at 1℃/s cooling. When the cooling speed drops from 0.1℃/s to 0.7℃/s, the phase transformation starts temperature drops from 650℃ to 615℃, and the phase transformation ends temperature drops from 560℃ to 400℃.
页数94
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17269
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
赵炎. TC18钛合金在等温和连续冷却过程中的相变[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[赵炎]的文章
百度学术
百度学术中相似的文章
[赵炎]的文章
必应学术
必应学术中相似的文章
[赵炎]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。