IMR OpenIR
The prediction model and experimental research of grinding surface roughness based on AE signal
Yin, Guoqiang1; Wang, Jiahui1; Guan, Yunyun1; Wang, Dong2; Sun, Yao1
通讯作者Yin, Guoqiang(yinguoqiang@me.neu.edu.cn)
2022-04-16
发表期刊INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
ISSN0268-3768
页码13
摘要This paper is based on the investigation of the relationship between the processing parameters and the characteristic parameters of acoustic emission signal (AE signal) including RMS value, ringing count, and signal spectrum during the grinding of several difficult-to-machine metallic materials; the variation of AE signal characteristic parameters and spectrum with the parameters of grinding depth a(p), grinding wheel velocity v(s), and feed velocity v(w) was analyzed, then the corresponding relationship between acoustic emission signal characteristic parameters and machining surface roughness was given. On this basis, the multi-information fusion algorithm based on BP neural network was used to reasonably fuse various characteristic parameters of AE signals, then predict and recognize the surface roughness of grinding workpieces. Finally, the established model was optimized by using genetic algorithm, which significantly improved the prediction accuracy and provided a reliable prediction model for the grinding of difficult-to-machine alloys, providing a feasible method for predicting surface roughness for practical production.
关键词AE signal Multi-information fusion model Grinding process Surface roughness
资助者National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities
DOI10.1007/s00170-022-09135-x
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51771193] ; National Natural Science Foundation of China[52005092] ; Fundamental Research Funds for the Central Universities[N2103013]
WOS研究方向Automation & Control Systems ; Engineering
WOS类目Automation & Control Systems ; Engineering, Manufacturing
WOS记录号WOS:000782874300002
出版者SPRINGER LONDON LTD
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/172801
专题中国科学院金属研究所
通讯作者Yin, Guoqiang
作者单位1.Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Yin, Guoqiang,Wang, Jiahui,Guan, Yunyun,et al. The prediction model and experimental research of grinding surface roughness based on AE signal[J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2022:13.
APA Yin, Guoqiang,Wang, Jiahui,Guan, Yunyun,Wang, Dong,&Sun, Yao.(2022).The prediction model and experimental research of grinding surface roughness based on AE signal.INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,13.
MLA Yin, Guoqiang,et al."The prediction model and experimental research of grinding surface roughness based on AE signal".INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2022):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yin, Guoqiang]的文章
[Wang, Jiahui]的文章
[Guan, Yunyun]的文章
百度学术
百度学术中相似的文章
[Yin, Guoqiang]的文章
[Wang, Jiahui]的文章
[Guan, Yunyun]的文章
必应学术
必应学术中相似的文章
[Yin, Guoqiang]的文章
[Wang, Jiahui]的文章
[Guan, Yunyun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。