IMR OpenIR
Artificial intelligence-assisted fatigue fracture recognition based on morphing and fully convolutional networks
Lyu, Yetao1; Yang, Zi1; Liang, Hao2; Zhang, Beini3; Ge, Ming4; Liu, Rui5; Zhang, Zhefeng5; Yang, Haokun2
通讯作者Lyu, Yetao(aaronlyu@hkpc.org) ; Yang, Haokun(hkyang@hkpc.org)
2022-04-06
发表期刊FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES
ISSN8756-758X
页码13
摘要Fatigue fracture is one of the most common metallic component failure cases in manufacturing industries. The observation on fractography can provide direct evidence for failure analysis. In this study, an image semantic segmentation method based on fully convolutional networks (FCNs) was proposed to figure out the boundary between fatigue crack propagation and fast fracture regions from optical microscope (OM) fractography images. Furthermore, a novel morphing-based data augmentation method was adopted to enable few-shot learning of sample images. The proposed framework can successfully segment two categories, namely, the crack propagation and fast fracture regions, thus differentiating the boundary of two regions in one image. This artificial intelligence (AI)-assisted fatigue analysis architecture can complete the failure analysis procedure in 0.5 s and prove the feasibility of fatigue failure analysis. The segmentation accuracy of self-developed network achieves 95.4% for the fatigue crack propagation region, as well as 97.2% for the fast fracture region. Not only for semantic segmentation DNN, we also prove that our novel data augmentation method can applied at the instance segmentation DNN, such as mask regional convolutional neural network (mask R-CNN), one state-of-the-art deep learning network for instance segmentation, to achieve similar accuracy.
关键词artificial intelligence failure analysis fatigue fracture fully convolutional network mask R-CNN morphing-based data augmentation
资助者CRD Program of Hong Kong Productivity Council ; Shenzhen Institute of Artificial Intelligence and Robotics for Society ; National Natural Science Foundation of China (NSFC)
DOI10.1111/ffe.13693
收录类别SCI
语种英语
资助项目CRD Program of Hong Kong Productivity Council[10008787] ; CRD Program of Hong Kong Productivity Council[10009455] ; Shenzhen Institute of Artificial Intelligence and Robotics for Society[AC01202005025] ; National Natural Science Foundation of China (NSFC)[51901230]
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary
WOS记录号WOS:000781012900001
出版者WILEY
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/172810
专题中国科学院金属研究所
通讯作者Lyu, Yetao; Yang, Haokun
作者单位1.Hong Kong Prod Council HKPC, Robot & Artificial Intelligence Div, Hong Kong, Peoples R China
2.Hong Kong Prod Council HKPC, Smart Mfg Div, Hong Kong, Peoples R China
3.Hong Kong Univ Sci & Technol HKUST, Dept Phys, Hong Kong, Peoples R China
4.Hong Kong Ind Artificial Intelligence & Robot Ctr, Hong Kong, Peoples R China
5.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang, Peoples R China
推荐引用方式
GB/T 7714
Lyu, Yetao,Yang, Zi,Liang, Hao,et al. Artificial intelligence-assisted fatigue fracture recognition based on morphing and fully convolutional networks[J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES,2022:13.
APA Lyu, Yetao.,Yang, Zi.,Liang, Hao.,Zhang, Beini.,Ge, Ming.,...&Yang, Haokun.(2022).Artificial intelligence-assisted fatigue fracture recognition based on morphing and fully convolutional networks.FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES,13.
MLA Lyu, Yetao,et al."Artificial intelligence-assisted fatigue fracture recognition based on morphing and fully convolutional networks".FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2022):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lyu, Yetao]的文章
[Yang, Zi]的文章
[Liang, Hao]的文章
百度学术
百度学术中相似的文章
[Lyu, Yetao]的文章
[Yang, Zi]的文章
[Liang, Hao]的文章
必应学术
必应学术中相似的文章
[Lyu, Yetao]的文章
[Yang, Zi]的文章
[Liang, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。