IMR OpenIR
Temperature-dependent yield strength and deformation mechanism of a casting Ni-based superalloy containing low volume-fraction gamma ' phase
Hou, Kunlei1,2; Wang, Min1,3; Zhao, Peng1,2; Ou, Meiqiong1,3; Li, Haoze1,3; Ma, Yingche1,3; Liu, Kui1,3
通讯作者Ma, Yingche(ycma@imr.ac.cn) ; Liu, Kui(kliu@imr.ac.cn)
2022-06-05
发表期刊JOURNAL OF ALLOYS AND COMPOUNDS
ISSN0925-8388
卷号905页码:10
摘要This study investigates the temperature-dependent yield strength and deformation mechanism of a new casting Ni-based superalloy K4750. This alloy exhibits yield strength anomaly (YSA) at 650-750 degrees C though it contains only low volume-fraction gamma ' phase (22%). Using the interrupted samples after ~1.0% plastic strain, the dominant deformation mechanisms at the initial yielding stage are identified as: (i) (anti-phase boundary)APB-coupled dislocation pairs shearing gamma ' from room temperature to 650 degrees C, (ii) dislocations bypassing gamma ' and creating loops above 650 degrees C, and (iii) dislocations overcome gamma ' by the thermally activated cross-slip and local climb at 850 degrees C. Additionally, with the proceeding of deformation, superlattice stacking faults shearing is active above 750 degrees C, implying that the deformation mechanism changes as the deformation progresses. According to the theoretical calculation, the critical resolved shear stress of Orowan looping decreases faster than APB shearing with the temperature increase, which is in agreement with the observed transition of deformation mechanism. Moreover, the remaining loops hinder the movement of subsequent dislocations, resulting in severe dislocation entanglement and high dislocation density in the heterogeneous slip bands, contributing to YSA. By contrast, dislocations can easily surmount gamma ' phase by cross-slip and climb at 850 degrees C, leading to a rapid degradation of yield strength.(c) 2022 Elsevier B.V. All rights reserved.
关键词Ni-based superalloy Temperature effect Yield strength anomaly Deformation mechanism Orowan looping
资助者National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; National Major Science and Technology Projects of China
DOI10.1016/j.jallcom.2022.164187
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[52001314] ; China Postdoctoral Science Foundation[2020M671403] ; National Major Science and Technology Projects of China[J2019-VI-0004-0118] ; National Major Science and Technology Projects of China[J2019-VII-0002-0142]
WOS研究方向Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Chemistry, Physical ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000779681700003
出版者ELSEVIER SCIENCE SA
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/172825
专题中国科学院金属研究所
通讯作者Ma, Yingche; Liu, Kui
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
3.IMR NMSA, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Hou, Kunlei,Wang, Min,Zhao, Peng,et al. Temperature-dependent yield strength and deformation mechanism of a casting Ni-based superalloy containing low volume-fraction gamma ' phase[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2022,905:10.
APA Hou, Kunlei.,Wang, Min.,Zhao, Peng.,Ou, Meiqiong.,Li, Haoze.,...&Liu, Kui.(2022).Temperature-dependent yield strength and deformation mechanism of a casting Ni-based superalloy containing low volume-fraction gamma ' phase.JOURNAL OF ALLOYS AND COMPOUNDS,905,10.
MLA Hou, Kunlei,et al."Temperature-dependent yield strength and deformation mechanism of a casting Ni-based superalloy containing low volume-fraction gamma ' phase".JOURNAL OF ALLOYS AND COMPOUNDS 905(2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Kunlei]的文章
[Wang, Min]的文章
[Zhao, Peng]的文章
百度学术
百度学术中相似的文章
[Hou, Kunlei]的文章
[Wang, Min]的文章
[Zhao, Peng]的文章
必应学术
必应学术中相似的文章
[Hou, Kunlei]的文章
[Wang, Min]的文章
[Zhao, Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。