Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles | |
Qie, Zhipeng1,2; Rabbani, Arash2; Liang, Yan3; Sun, Fei1; Behnsen, Julia4; Wang, Ying4; Wang, Shaogang3; Zhang, Yuming5; Alhassawi, Hassan2; Gao, Jihui1; Zhao, Guangbo1; Babaei, Masoud2; Garforth, Arthur A.2; Jiao, Yilai3; Fan, Xiaolei2 | |
通讯作者 | Sun, Fei(sunf@hit.edu.cn) ; Jiao, Yilai(yljiao@imr.ac.cn) ; Fan, Xiaolei(xiaolei.fan@manchester.ac.uk) |
2022-07-15 | |
发表期刊 | CHEMICAL ENGINEERING JOURNAL
![]() |
ISSN | 1385-8947 |
卷号 | 440页码:10 |
摘要 | Pore network is regarded as one of the most important aspects of FCC (Fluid Catalytic Cracking) catalysts for delivering reactants to active sites and transporting out products, and the structure of which can significantly influence the process efficiency. In this work, six characterization methods complementing each other were employed to study the full-scale pore structure (0.4 nm 20 mu m) of fresh FCC particles, especially the X-ray computed tomography (CT) and focused ion beam-scanning electron microscope (FIB-SEM). To focus on nano scale pores, 3D reconstruction of a whole FCC particle was achieved based on nano-CT, from which the pore network model (PNM) was successfully extracted. Then, permeability simulations along different directions and through various sub-volumes were carried out to demonstrate the anisotropy and heterogeneity of pore structure, respectively. It was also found that the tortuosity of the pores distributed in the outer layer of the FCC particle was more significant than that in the central part of the particle, which could be the mass transfer limiting region during catalysis. Comprehensive acknowledgment of pore structure provides guidance for the optimization of the design of FCC particles, and the multi-scale characterization strategy is a generic strategy for in-depth investigation of structured porous materials. |
关键词 | Fluid catalytic cracking (FCC) X-ray computed tomography (CT) Focused ion beam-scanning electron micro- scope (FIB-SEM) Pore size distribution Permeability Heterogeneity |
资助者 | China Scholarship Council ; National Natural Science Foundation of China |
DOI | 10.1016/j.cej.2022.135843 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | China Scholarship Council[201906120207] ; National Natural Science Foundation of China[U1862107] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Environmental ; Engineering, Chemical |
WOS记录号 | WOS:000783179000004 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/172882 |
专题 | 中国科学院金属研究所 |
通讯作者 | Sun, Fei; Jiao, Yilai; Fan, Xiaolei |
作者单位 | 1.Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China 2.Univ Manchester, Sch Engn, Dept Chem Engn, Manchester M13 9PL, Lancs, England 3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 4.Univ Manchester, Sch Mat, Henry Royce Inst Adv Mat, Manchester M13 9PL, Lancs, England 5.China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China |
推荐引用方式 GB/T 7714 | Qie, Zhipeng,Rabbani, Arash,Liang, Yan,et al. Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles[J]. CHEMICAL ENGINEERING JOURNAL,2022,440:10. |
APA | Qie, Zhipeng.,Rabbani, Arash.,Liang, Yan.,Sun, Fei.,Behnsen, Julia.,...&Fan, Xiaolei.(2022).Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles.CHEMICAL ENGINEERING JOURNAL,440,10. |
MLA | Qie, Zhipeng,et al."Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles".CHEMICAL ENGINEERING JOURNAL 440(2022):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论