IMR OpenIR
Accelerated design for elastocaloric performance in NiTi-based alloys through machine learning
Tian, Xiaohua1; Zhao, Qiu1; Zhang, Kun2,3; Li, Hongxing2; Han, Binglun2; Shi, Dingding1; Zhou, Liwen1; Ma, Tianyou2; Wang, Cheng2; Wen, Qinlong4; Tan, Changlong2
通讯作者Zhang, Kun(kunzhang@hrbust.edu.cn)
2022-01-07
发表期刊JOURNAL OF APPLIED PHYSICS
ISSN0021-8979
卷号131期号:1页码:10
摘要NiTi-based shape memory alloys (SMAs) are regarded as one of the most promising materials for engineering applications of elastocaloric refrigeration. A critical mission is to efficiently explore the new NiTi-based SMAs with large adiabatic temperature change (& UDelta;T-ad). We proposed a new material design method that combines highly correlated microscale physical information (volume change, & UDelta; V) into machine learning to predict & UDelta;T-ad of NiTi-based alloys. First, we tightly coupled machine learning with first-principles calculations to accelerate receiving lattice parameters before and after the phase transformation and predict the & UDelta; V, which shows excellent performance with the coefficient of determination R-2 > 0.99. Then, relevant features, including the & UDelta; V, are considered to predict the & UDelta;T-ad in NiTi-based SMAs. Moreover, due to the small dataset, the principal component analysis and the independent component analysis are added. We evaluate the performance of three machine learning models [Lasso regression, support vector regression, and decision tree regression (DTR)]. Finally, the DTR model exhibits a high accuracy for predicting & UDelta;T-ad (R-2 > 0.9). Introducing the feature of & UDelta; V into the machine learning process can improve the accuracy and efficiency of model design. Further, this work paves the way to accelerate the discovery of new excellent materials for practical applications of elastocaloric refrigeration.
资助者National Natural Science Foundation of China (NNSFC) ; China Postdoctoral Science Foundation
DOI10.1063/5.0068290
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NNSFC)[51971085] ; National Natural Science Foundation of China (NNSFC)[51871083] ; National Natural Science Foundation of China (NNSFC)[52001101] ; China Postdoctoral Science Foundation[2021M693229]
WOS研究方向Physics
WOS类目Physics, Applied
WOS记录号WOS:000744570400010
出版者AIP Publishing
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/173602
专题中国科学院金属研究所
通讯作者Zhang, Kun
作者单位1.Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
2.Harbin Univ Sci & Technol, Sch Sci, Harbin 150080, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
4.Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
推荐引用方式
GB/T 7714
Tian, Xiaohua,Zhao, Qiu,Zhang, Kun,et al. Accelerated design for elastocaloric performance in NiTi-based alloys through machine learning[J]. JOURNAL OF APPLIED PHYSICS,2022,131(1):10.
APA Tian, Xiaohua.,Zhao, Qiu.,Zhang, Kun.,Li, Hongxing.,Han, Binglun.,...&Tan, Changlong.(2022).Accelerated design for elastocaloric performance in NiTi-based alloys through machine learning.JOURNAL OF APPLIED PHYSICS,131(1),10.
MLA Tian, Xiaohua,et al."Accelerated design for elastocaloric performance in NiTi-based alloys through machine learning".JOURNAL OF APPLIED PHYSICS 131.1(2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian, Xiaohua]的文章
[Zhao, Qiu]的文章
[Zhang, Kun]的文章
百度学术
百度学术中相似的文章
[Tian, Xiaohua]的文章
[Zhao, Qiu]的文章
[Zhang, Kun]的文章
必应学术
必应学术中相似的文章
[Tian, Xiaohua]的文章
[Zhao, Qiu]的文章
[Zhang, Kun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。