IMR OpenIR
Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure
Cao, Ruqing1; Yu, Qin2; Li, Yi1; Ritchie, Robert O.2
通讯作者Li, Yi(liyi@imr.ac.cn) ; Ritchie, Robert O.(roritchie@lbl.gov)
2021-11-01
发表期刊JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
ISSN2238-7854
卷号15页码:901-910
摘要Nature-inspired gradients can be implemented in metallic materials to achieve a synergy of strength and ductility. However, due to the small (often microscale) size of the gradient structured samples, their fracture properties have remained relatively unexplored. By fabricating centimeter-sized gradient-structured pure nickel samples using direct-current electroplating technique, we demonstrate that a dual-gradient architecture in pure nickel, comprising grain-size transitions from coarse grains to nano grains and then back to coarse grains (CG -> NG -> CG), achieves an optimized combination of strength-ductility synergy and exceptional fracture resistance a crack-initiation toughness exceeding 300 MPa m(1/2) - while minimizing the problem of final unstable catastrophic failure. Significantly, this dual-gradient CG -> NG -> CG structure can effectively arrest any brittle fracture in the nano grains by inducing a stable rising R-curve with an enhanced crack growth toughness exceeding 350 MPa m(1/2). We believe that this dual-gradient CG -> NG -> CG structure provides a promising prototype for designing multi-layer graded structures with exceptional combinations of mechanical properties which can be readily tuned to meet the advanced requirements of safety-critical applications. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
关键词Electroplating Nickel Gradient structure Ductility Fracture toughness
资助者National Key Research and Development Program of China ; National Natural Science Foundation of China
DOI10.1016/j.jmrt.2021.08.102
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFB0702003] ; National Natural Science Foundation of China[51471165]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000734202600012
出版者ELSEVIER
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/173836
专题中国科学院金属研究所
通讯作者Li, Yi; Ritchie, Robert O.
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
2.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
推荐引用方式
GB/T 7714
Cao, Ruqing,Yu, Qin,Li, Yi,et al. Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure[J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,2021,15:901-910.
APA Cao, Ruqing,Yu, Qin,Li, Yi,&Ritchie, Robert O..(2021).Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure.JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,15,901-910.
MLA Cao, Ruqing,et al."Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure".JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T 15(2021):901-910.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Ruqing]的文章
[Yu, Qin]的文章
[Li, Yi]的文章
百度学术
百度学术中相似的文章
[Cao, Ruqing]的文章
[Yu, Qin]的文章
[Li, Yi]的文章
必应学术
必应学术中相似的文章
[Cao, Ruqing]的文章
[Yu, Qin]的文章
[Li, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。