IMR OpenIR
Fabrication of ultrafine-grained Ti-15Zr-x Cu alloys through martensite decompositions under thermomechanical coupling conditions
Gao, Wenwei1,2; Wang, Hai1; Koenigsmann, Konrad3; Zhang, Shuyuan1; Ren, Ling1; Yang, Ke1
通讯作者Ren, Ling(lren@imr.ac.cn)
2022-11-10
发表期刊JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN1005-0302
卷号127页码:19-28
摘要Grain refinement is a well-recognized method to simultaneously increase the strength and ductility of metallic materials. Fabrication of ultrafine-grained metals in bulk using a simple low-cost approach is a long-term goal for material scientists. In this work, based on the chemical composition of a biomedical Ti-15Zr alloy, a series of novel Ti-15Zr- x Cu ( x = 0, 3, 5, 7 wt.%) alloys were designed and fabricated. The alloys were quenched in the single ???phase region to obtain a martensitic microstructure and deformed in the temperature range of 710???750 ??C to obtain an ultrafine-grained microstructure through martensite decomposition under thermomechanical coupling conditions. Experimental results showed that Cu alloying could increase the dynamic recrystallization (DRX) nucleation rate due to its role in both refining martensitic lath width and increasing dislocation density. Cu alloying could also suppress grain growth due to the precipitated Ti 2 Cu particles exerting pinning forces on the grain boundaries. The optimal Cu content in the Ti-15Zr- x Cu alloy was determined to be 5 wt.%. After being subjected to a compression leading to a 70% height reduction at 730 ??C and 1 s ???1 , the grain size of the Ti-15Zr-5Cu alloy was only 180 ?? 70 nm. The tensile strength of the as-prepared alloy reached 975 ?? 10 MPa, which was 45% higher than that of the conventional Ti-15Zr alloy (673 ?? 16 MPa). This increase in strength was achieved without any reduction in ductility. The comprehensive mechanical properties of the ultrafinegrained Ti-15Zr-5Cu alloy are better than that of the Roxolid Ti???Zr alloy currently used for dental implants. ?? 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
关键词Titanium alloy Dynamic recrystallization Hot deformation Nucleation
资助者National Key Re-search and Development Program of China ; Doctoral Scientific Research Foundation of Liaoning Province
DOI10.1016/j.jmst.2022.02.044
收录类别SCI
语种英语
资助项目National Key Re-search and Development Program of China[2018YFC1106601] ; Doctoral Scientific Research Foundation of Liaoning Province[2020BS002]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000798055400002
出版者JOURNAL MATER SCI TECHNOL
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/174135
专题中国科学院金属研究所
通讯作者Ren, Ling
作者单位1.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
3.Univ Chicago, Chicago, IL 60637 USA
推荐引用方式
GB/T 7714
Gao, Wenwei,Wang, Hai,Koenigsmann, Konrad,et al. Fabrication of ultrafine-grained Ti-15Zr-x Cu alloys through martensite decompositions under thermomechanical coupling conditions[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2022,127:19-28.
APA Gao, Wenwei,Wang, Hai,Koenigsmann, Konrad,Zhang, Shuyuan,Ren, Ling,&Yang, Ke.(2022).Fabrication of ultrafine-grained Ti-15Zr-x Cu alloys through martensite decompositions under thermomechanical coupling conditions.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,127,19-28.
MLA Gao, Wenwei,et al."Fabrication of ultrafine-grained Ti-15Zr-x Cu alloys through martensite decompositions under thermomechanical coupling conditions".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 127(2022):19-28.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Wenwei]的文章
[Wang, Hai]的文章
[Koenigsmann, Konrad]的文章
百度学术
百度学术中相似的文章
[Gao, Wenwei]的文章
[Wang, Hai]的文章
[Koenigsmann, Konrad]的文章
必应学术
必应学术中相似的文章
[Gao, Wenwei]的文章
[Wang, Hai]的文章
[Koenigsmann, Konrad]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。