Regenerated Silk Nanofibers for Robust and Cyclic Adsorption-Desorption on Anionic Dyes | |
Mehdi, Mujahid1; Jiang, Wangkai1; Zeng, Qingping1; Thebo, Khalid Hussain2; Kim, Ick-Soo3; Khatri, Zeeshan4; Wang, Huifen5; Hu, Jianchen1; Zhang, Ke-Qin1 | |
通讯作者 | Hu, Jianchen(hujianchen@suda.edu.cn) ; Zhang, Ke-Qin(kqzhang@suda.edu.cn) |
2022-05-24 | |
发表期刊 | LANGMUIR
![]() |
ISSN | 0743-7463 |
卷号 | 38期号:20页码:6376-6386 |
摘要 | In recent years, adsorption-based membranes have been widely investigated to remove and separate textile pollutants. However, cyclic adsorption-desorption to reuse a single adsorbent and clear scientific evidence for the adsorption-desorption mechanism remains challenging. Herein, silk nanofibers were used to assess the adsorption potential for the typical anionic dyes from an aqueous medium, and they show great potential toward the removal of acid dyes from the aqueous solution with an adsorption rate of similar to 98% in a 1 min interaction. Further, we measured the filtration proficiency of a silk nanofiber membrane in order to propose a continuous mechanism for the removal of acid blue dye, and a complete rejection was observed with a maximum permeability rate of similar to 360 +/- 5 L.m(-2).h(-1). The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies demonstrate that this fast adsorption occurs due to multiple interactions between the dye molecule and the adsorbent substrate. The as-prepared material also shows remarkable results in desorption. A 50-time cycle exhibits complete adsorption and desorption ability, which not only facilitates high removal aptitude but also produces less solid waste than other conventional adsorbents. Additionally, fluorescent 2-bromo-2-methyl-propionic acid (abbreviated as EtOxPY)-silk nanofibers can facilitate to illustrate a clear adsorption and desorption mechanism. Therefore, the above-prescribed results make electrospun silk nanofibers a suitable choice for removing anionic dyes in real-time applications. |
资助者 | National Key Research and Development Program of China ; Natural Science Foundation of China ; Natural Science Foundation for Key Program of the Jiangsu Higher Education Institutions ; Natural Science Foundation of the Jiangsu Province of China ; Nantong Science and Technology Bureau |
DOI | 10.1021/acs.langmuir.2c00314 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2017YFA0204600] ; Natural Science Foundation of China[51873134] ; Natural Science Foundation of China[51603135] ; Natural Science Foundation for Key Program of the Jiangsu Higher Education Institutions[17KJA540002] ; Natural Science Foundation of the Jiangsu Province of China[BK20211317] ; Nantong Science and Technology Bureau[JC2021043] |
WOS研究方向 | Chemistry ; Materials Science |
WOS类目 | Chemistry, Multidisciplinary ; Chemistry, Physical ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:000803035700013 |
出版者 | AMER CHEMICAL SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/174144 |
专题 | 中国科学院金属研究所 |
通讯作者 | Hu, Jianchen; Zhang, Ke-Qin |
作者单位 | 1.Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China 2.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China 3.Shinshu Univ, Interdisciplinary Cluster Cutting Edge Res ICCER, Inst Fiber Engn IFES, Nano Fus Technol Res Grp,Div Frontier Fibers, Ueda, Nagano 3868567, Japan 4.Mehran Univ Engn & Technol, Ctr Excellence Nanotechnol & Mat, Jamshoro 76060, Pakistan 5.Shanghai Inst Spacecraft Equipment, Shanghai 200240, Peoples R China |
推荐引用方式 GB/T 7714 | Mehdi, Mujahid,Jiang, Wangkai,Zeng, Qingping,et al. Regenerated Silk Nanofibers for Robust and Cyclic Adsorption-Desorption on Anionic Dyes[J]. LANGMUIR,2022,38(20):6376-6386. |
APA | Mehdi, Mujahid.,Jiang, Wangkai.,Zeng, Qingping.,Thebo, Khalid Hussain.,Kim, Ick-Soo.,...&Zhang, Ke-Qin.(2022).Regenerated Silk Nanofibers for Robust and Cyclic Adsorption-Desorption on Anionic Dyes.LANGMUIR,38(20),6376-6386. |
MLA | Mehdi, Mujahid,et al."Regenerated Silk Nanofibers for Robust and Cyclic Adsorption-Desorption on Anionic Dyes".LANGMUIR 38.20(2022):6376-6386. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论