IMR OpenIR
Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation
Tian, Xiaohua1; Zhou, Liwen1; Zhang, Kun2,3; Zhao, Qiu1; Li, Hongxing2; Shi, Dingding1; Ma, Tianyou2; Wang, Cheng2; Wen, Qinlong4; Tan, Changlong2
通讯作者Zhang, Kun(kunzhang@hrbust.edu.cn) ; Tan, Changlong(changlongtan@hrbust.edu.cn)
2022-08-01
发表期刊COMPUTATIONAL MATERIALS SCIENCE
ISSN0927-0256
卷号211页码:7
摘要Shape memory alloys (SMAs) are desirable candidates for elastocaloric effect materials, but they all suffer from large thermal hysteresis (T-hys). This study analyzes multicomponent TiNi-based SMAs dataset by machine learning (ML) to explore new SMAs with narrow T-hys. The second-largest eigenvalue lambda(2) of the stretch trans-formation matrix U is added to the original dataset to guide the ML process as a feature. Firstly, lambda(2) is obtained by first-principles calculations combined with ML. XGBoost Regressor (XGBR) combined with Leave-One-Out Cross -Validation (LOO-CV) is selected from four algorithms for modeling with the highest coefficient of determination R-2 of 0.87. The introduction of lambda(2) improves the performance of the model. The dataset is divided into 15 groups based on different doping elements (such as Hf, Cu, Zr, etc.), among which TiNiCu is the most predictive component with the R-2 of 0.89. Over 500 TiNiCu components are randomly generated and predicted T-hys. Based on the contour maps created from the prediction results, it is found that T-hys is likely to decrease with the in-crease of Cu doping in general, and minimum T-hys occurs when the Cu is about 15 at. %, which is consistent with the existing experimental results. Eventually, a potential Thys minimum (1.2 K) region of TixNiyCuz (58.3%<= x <= 58.5%, 26.5% <= y <= 27%, 14.8% <= z <= 15.3%, x +y +z =100%) SMA composition is predicted. Our study not only provides a potential selection of narrow T-hys TiNi-based SMAs but also indicates combining of XGBoost and DFT calculation is an effective strategy for materials design.
关键词Thermal hysteresis NiTi shape memory alloys Machine learning XGBoost First-principles calculations
资助者National Natural Science Foundation of China ; China Postdoctoral Science Foundation
DOI10.1016/j.commatsci.2022.111519
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51971085] ; National Natural Science Foundation of China[51871083] ; National Natural Science Foundation of China[52001101] ; China Postdoctoral Science Foundation[2021M693229]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:000807750900007
出版者ELSEVIER
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/174351
专题中国科学院金属研究所
通讯作者Zhang, Kun; Tan, Changlong
作者单位1.Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
2.Harbin Univ Sci & Technol, Sch Sci, Harbin 150080, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
4.Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xi'an 710072, Peoples R China
推荐引用方式
GB/T 7714
Tian, Xiaohua,Zhou, Liwen,Zhang, Kun,et al. Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation[J]. COMPUTATIONAL MATERIALS SCIENCE,2022,211:7.
APA Tian, Xiaohua.,Zhou, Liwen.,Zhang, Kun.,Zhao, Qiu.,Li, Hongxing.,...&Tan, Changlong.(2022).Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation.COMPUTATIONAL MATERIALS SCIENCE,211,7.
MLA Tian, Xiaohua,et al."Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation".COMPUTATIONAL MATERIALS SCIENCE 211(2022):7.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian, Xiaohua]的文章
[Zhou, Liwen]的文章
[Zhang, Kun]的文章
百度学术
百度学术中相似的文章
[Tian, Xiaohua]的文章
[Zhou, Liwen]的文章
[Zhang, Kun]的文章
必应学术
必应学术中相似的文章
[Tian, Xiaohua]的文章
[Zhou, Liwen]的文章
[Zhang, Kun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。