IMR OpenIR
Theoretical design of BAs/WX2 (X = S, Se) heterostructures for high-performance photovoltaic applications from DFT calculations
Guan, Yue1,2; Li, Xiaodan3; Hu, Qingmiao4; Zhao, Dandan1; Zhang, Lin1,2
通讯作者Zhang, Lin(zhanglin@imp.neu.edu.cn)
2022-10-15
发表期刊APPLIED SURFACE SCIENCE
ISSN0169-4332
卷号599页码:11
摘要In this paper, based on first principle calculations, we systematically investigate thermal, mechanical, electronic and optical properties of hetemstructures composed of boron arsenide (BAs) and WX2 (X = S, Se). The binding energy (289.7 meV and 484.6 meV for BAs/WS2 and BAs/WSe2, respectively), phonon spectra, molecular dynamics and elastic deformation resistance indicate that the heterostructures are structurally, dynamically, and mechanically stable. The investigated van der Waals (vdWs) heterostructures (BAs/WS2 and BAs/WSe2) are all direct bandgap (0.6 eV and 0.7 eV, respectively) semiconductors, where the BAs/WS2 vdWs heterostructure possesses a type-II band alignment, which promotes the separation of photogenerated carriers and prolong their lifetime significantly. The BAs/WSe2 vdWs heterostructure exhibits a type-I band alignment, which in turn facilitates the rapid recombination of photogenerated carriers. Both BAs/WS2 and BAs/WSe2 heterostructures possess high carrier mobility (10(2) similar to 10(3) cm(2)/Vs) and optical absorptivity (-10(5) cm(-1)) in a wide range from ultraviolet to visible light region, making them highly efficient for solar energy. The band structures and carrier mobilities of BAs/WX2 hetemstructures are significantly affected by the spin-orbit coupling (SOC) effect. In addition, the external electric field can tailor the band structures including the transition between the direct and the indirect band gaps and the evolution between the type-I and type-II band alignments. The theoretical predictions suggest that BAs/WX2 heterostructures are promising candidates for future nanoelectmnics and optoelectronic devices, providing some valuable information for future experimental research.
关键词First principle calculations 2D materials Heterojunction Electronic structure Electric field Photovoltaic applications
资助者National Natural Science Foundation of China
DOI10.1016/j.apsusc.2022.153865
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51671051]
WOS研究方向Chemistry ; Materials Science ; Physics
WOS类目Chemistry, Physical ; Materials Science, Coatings & Films ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:000832728900001
出版者ELSEVIER
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/174588
专题中国科学院金属研究所
通讯作者Zhang, Lin
作者单位1.Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China
2.Northeastern Univ, Sch Mat Sci & Engn, Dept Mat Phys & Chem, Shenyang 110167, Peoples R China
3.Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
4.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Guan, Yue,Li, Xiaodan,Hu, Qingmiao,et al. Theoretical design of BAs/WX2 (X = S, Se) heterostructures for high-performance photovoltaic applications from DFT calculations[J]. APPLIED SURFACE SCIENCE,2022,599:11.
APA Guan, Yue,Li, Xiaodan,Hu, Qingmiao,Zhao, Dandan,&Zhang, Lin.(2022).Theoretical design of BAs/WX2 (X = S, Se) heterostructures for high-performance photovoltaic applications from DFT calculations.APPLIED SURFACE SCIENCE,599,11.
MLA Guan, Yue,et al."Theoretical design of BAs/WX2 (X = S, Se) heterostructures for high-performance photovoltaic applications from DFT calculations".APPLIED SURFACE SCIENCE 599(2022):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guan, Yue]的文章
[Li, Xiaodan]的文章
[Hu, Qingmiao]的文章
百度学术
百度学术中相似的文章
[Guan, Yue]的文章
[Li, Xiaodan]的文章
[Hu, Qingmiao]的文章
必应学术
必应学术中相似的文章
[Guan, Yue]的文章
[Li, Xiaodan]的文章
[Hu, Qingmiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。