IMR OpenIR
Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries
Wu, Shangshu1; Kou, Zongde1; Lai, Qingquan1,5; Lan, Si1; Katnagallu, Shyam Swaroop2; Hahn, Horst1,2; Taheriniya, Shabnam3; Wilde, Gerhard1,3; Gleiter, Herbert1,3,4; Feng, Tao1
通讯作者Lai, Qingquan(qingquanlai@hotmail.com) ; Feng, Tao(tao.feng@njust.edu.cn)
2022-09-17
发表期刊NATURE COMMUNICATIONS
卷号13期号:1页码:8
摘要The development of high-strength metals has driven the endeavor of pushing the limit of grain size (d) reduction according to the Hall-Petch law. But the continuous grain refinement is particularly challenging, raising also the problem of inverse Hall-Petch effect. Here, we show that the nanograined metals (NMs) with d of tens of nanometers could be strengthened to the level comparable to or even beyond that of the extremely-fine NMs (d similar to 5 nm) attributing to the dislocation exhaustion. We design the Fe-Ni NM with intergranular Ni enrichment. The results show triggering of structural transformation at grain boundaries (GBs) at low temperature, which consumes lattice dislocations significantly. Therefore, the plasticity in the dislocation-exhausted NMs is suggested to be dominated by the activation of GB dislocation sources, leading to the ultra-hardening effect. This approach demonstrates a new pathway to explore NMs with desired properties by tailoring phase transformations via GB physico-chemical engineering.
资助者National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities ; Qing Lan project of Jiangsu province ; Natural Science Foundation of Jiangsu Province ; National Key R&D Program of China ; DOE Office of Science ; US DOE Office of Science, Office of Basic Energy Sciences ; Distinguished professor project of Jiangsu province
DOI10.1038/s41467-022-33257-1
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[55001166] ; National Natural Science Foundation of China[51520105001] ; National Natural Science Foundation of China[51571119] ; National Natural Science Foundation of China[51871120] ; Fundamental Research Funds for the Central Universities[30919011404] ; Qing Lan project of Jiangsu province ; Natural Science Foundation of Jiangsu Province[BK20210352] ; Natural Science Foundation of Jiangsu Province[BK20200019] ; National Key R&D Program of China[2021YFB3802800] ; DOE Office of Science[DE-AC02-06CH11357] ; US DOE Office of Science, Office of Basic Energy Sciences ; Distinguished professor project of Jiangsu province
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000854873600005
出版者NATURE PORTFOLIO
引用统计
被引频次:51[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/175504
专题中国科学院金属研究所
通讯作者Lai, Qingquan; Feng, Tao
作者单位1.Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Herbert Gleiter Inst Nanosci, Nanjing 210094, Peoples R China
2.Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
3.Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
4.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
5.Nanjing Tech Univ, Key Lab Light Weight Mat, Nanjing 211816, Peoples R China
推荐引用方式
GB/T 7714
Wu, Shangshu,Kou, Zongde,Lai, Qingquan,et al. Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries[J]. NATURE COMMUNICATIONS,2022,13(1):8.
APA Wu, Shangshu.,Kou, Zongde.,Lai, Qingquan.,Lan, Si.,Katnagallu, Shyam Swaroop.,...&Feng, Tao.(2022).Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries.NATURE COMMUNICATIONS,13(1),8.
MLA Wu, Shangshu,et al."Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries".NATURE COMMUNICATIONS 13.1(2022):8.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Shangshu]的文章
[Kou, Zongde]的文章
[Lai, Qingquan]的文章
百度学术
百度学术中相似的文章
[Wu, Shangshu]的文章
[Kou, Zongde]的文章
[Lai, Qingquan]的文章
必应学术
必应学术中相似的文章
[Wu, Shangshu]的文章
[Kou, Zongde]的文章
[Lai, Qingquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。