Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic | |
Wang, Xiaodi1; Bai, Wenliang1; Zhang, Zhe1; Wang, Zhengbin2; Ren, Xuechong1 | |
通讯作者 | Wang, Xiaodi(wangxiaodi@ustb.edu.cn) ; Ren, Xuechong(xcren@ustb.edu.cn) |
2023-01-18 | |
发表期刊 | MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
![]() |
ISSN | 0921-5093 |
卷号 | 862页码:14 |
摘要 | High-entropy alloys (HEAs) represent a new class of materials with excellent mechanical properties. However, more studies on the fatigue behavior of HEAs are urgently required before they can be used in engineering applications. Here, we report the four-point-bending fatigue properties of a face-centered-cubic (fcc) single-phase Al0.3CoCrFeNi HEA under a stress ratio of 0.1 and testing frequency of 40 Hz, as well as the corresponding fatigue mechanisms based on scanning electron microscopy and transmission electron microscopy images. This HEA exhibited a fatigue endurance limit of similar to 248 MPa and fatigue ratio of similar to 0.3, exceeding those of other fcc single-phase HEAs when compared using an identical stress ratio of -1. Good fatigue properties are attributed to the formation of planar dislocations, stacking faults, and deformation twins. Fatigue cracks were found to form at the slip bands, grain boundaries, and twin boundaries simultaneously under high stress levels; however, twinboundary cracks vanished under low stress levels. The interaction of planar dislocations with grain boundaries and twin boundaries is the reason for the occurrence of their cracking behaviors based on microstructural observation. In addition, fatigue cracks propagated in a deflected manner, even forming a zig-zag path locally, which is beneficial for fatigue resistance. The present findings offer a viable path for the design of HEAs with improved fatigue properties through the enhancement of their planar deformation characteristics. |
关键词 | High -entropy alloys Fatigue properties Fatigue cracking modes Stacking faults Deformation twins Fatigue crack propagation |
资助者 | Beijing Natural Science Foundation ; National Natural Science Foundation of China (NSFC) |
DOI | 10.1016/j.msea.2022.144499 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Beijing Natural Science Foundation ; National Natural Science Foundation of China (NSFC) ; [2222066] ; [52101065] |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000904651100002 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/175632 |
专题 | 中国科学院金属研究所 |
通讯作者 | Wang, Xiaodi; Ren, Xuechong |
作者单位 | 1.Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China 2.Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Xiaodi,Bai, Wenliang,Zhang, Zhe,et al. Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2023,862:14. |
APA | Wang, Xiaodi,Bai, Wenliang,Zhang, Zhe,Wang, Zhengbin,&Ren, Xuechong.(2023).Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,862,14. |
MLA | Wang, Xiaodi,et al."Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 862(2023):14. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论