IMR OpenIR
Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion
Wang, Qiuyuan1,2; Zeng, Yi1,2,3; Yuan, Kai1,2,4; Zeng, Qingqi5; Gu, Pingfan1,2; Xu, Xiaolong1,2; Wang, Hanwen6; Han, Zheng7,8; Nomura, Kentaro9,10,11; Wang, Wenhong5; Liu, Enke5; Hou, Yanglong3; Ye, Yu1,2,4
通讯作者Liu, Enke(ekliu@iphy.ac.cn) ; Hou, Yanglong(hou@pku.edu.cn) ; Ye, Yu(ye_yu@pku.edu.cn)
2022-12-22
发表期刊NATURE ELECTRONICS
ISSN2520-1131
页码7
摘要The efficiency of spintronic devices can be improved by generating higher effective magnetic fields with lower working currents. Spin-transfer torques can drive magnetic domain wall motion in a device composed of a single material, but a high threshold current density is typically required to move the domain wall and improving the effective magnetic field in common itinerant ferromagnets is difficult. Here we report magnetism modulation in Co3Sn2S2-a magnetic Weyl semimetal-via spin-transfer-torque-driven domain wall motion. We examine the effect of d.c. current on magnetic reversal using anomalous Hall resistance measurements and domain wall motion using time-of-flight measurements. At 160 K, the threshold current density for driving domain wall motion is less than 5.1 x 10(5 )A cm(-2) at zero external field and less than 1.5 x 10(5 )A cm(-2) at a moderate external field (0.2 kOe). The spin-transfer-torque effective field can reach as high as 2.4-5.6 kOe MA(-1) cm(2) at 150 K.
资助者National Key R&D Program of China ; National Natural Science Foundation of China ; Beijing Natural Science Foundation ; Chinese Academy of Sciences ; JST CREST ; JSPS KAKENHI
DOI10.1038/s41928-022-00879-8
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2017YFA0206301] ; National Key R&D Program of China[2018YFA0306900] ; National Key R&D Program of China[2022YFA1403400] ; National Natural Science Foundation of China[52088101] ; National Natural Science Foundation of China[11974394] ; National Natural Science Foundation of China[51631001] ; National Natural Science Foundation of China[51672010] ; Beijing Natural Science Foundation[JQ21018] ; Chinese Academy of Sciences[XDB33000000] ; JST CREST[JPMJCR18T2] ; JSPS KAKENHI[JP20H01830]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000903199200001
出版者NATURE PORTFOLIO
引用统计
被引频次:26[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/175862
专题中国科学院金属研究所
通讯作者Liu, Enke; Hou, Yanglong; Ye, Yu
作者单位1.Peking Univ, State Key Lab Mesoscop Phys, Beijing, Peoples R China
2.Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Sch Phys, Beijing, Peoples R China
3.Peking Univ, Beijing Innovat Ctr Engn Sci & Adv Technol, Sch Mat Sci & Engn, Beijing Key Lab Magnetoelectr Mat & Devices, Beijing, Peoples R China
4.Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
5.Chinese Acad Sci, Beijing Natl Ctr Condensed Matter Phys, Beijing, Peoples R China
6.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China
7.Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan, Peoples R China
8.Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan, Peoples R China
9.Tohoku Univ, Inst Mat Res, Ctr Spintron Res Network, Sendai, Japan
10.Tohoku Univ, Ctr Spintron Res Network, Sendai, Japan
11.Kyushu Univ, Dept Phys, Fukuoka, Japan
推荐引用方式
GB/T 7714
Wang, Qiuyuan,Zeng, Yi,Yuan, Kai,et al. Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion[J]. NATURE ELECTRONICS,2022:7.
APA Wang, Qiuyuan.,Zeng, Yi.,Yuan, Kai.,Zeng, Qingqi.,Gu, Pingfan.,...&Ye, Yu.(2022).Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion.NATURE ELECTRONICS,7.
MLA Wang, Qiuyuan,et al."Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion".NATURE ELECTRONICS (2022):7.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Qiuyuan]的文章
[Zeng, Yi]的文章
[Yuan, Kai]的文章
百度学术
百度学术中相似的文章
[Wang, Qiuyuan]的文章
[Zeng, Yi]的文章
[Yuan, Kai]的文章
必应学术
必应学术中相似的文章
[Wang, Qiuyuan]的文章
[Zeng, Yi]的文章
[Yuan, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。