Microstructure, thermal stability and tensile properties of a Ni-Fe-Cr based superalloy with different Fe contents | |
Cheng, Sihan1,2; Wang, Jiaqi1,2; Wu, Yunsheng1,3; Qin, Xuezhi1,3; Zhou, Lanzhang1,3 | |
通讯作者 | Qin, Xuezhi(xzqin@imr.ac.cn) ; Zhou, Lanzhang(lzzhou@imr.ac.cn) |
2023-02-01 | |
发表期刊 | INTERMETALLICS
![]() |
ISSN | 0966-9795 |
卷号 | 153页码:12 |
摘要 | The effects of Fe content on microstructure, thermal stability and tensile properties of a Ni-Fe-Cr based su-peralloy, mainly chosen as turbine rotor material in 700 degrees C advanced ultra-supercritical power plants, have been systematically investigated. The results show that the major precipitates of the heat-treated alloys with different Fe contents are all gamma ' phase, MC and M23C6 carbides, whereas the precipitation of gamma ' phase is suppressed in Fe-rich alloys. Fe content significantly improves the ductility of alloys, but slightly deteriorates the strength resulting from the decreased volume fraction of gamma ' phase. After long-term thermal exposure, the morphology trans-formation of gamma ' phase from spherical to cubic shape is observed in the alloy with 35% Fe content. The coarsening rate coefficient of gamma ' phase decreases from 485.7 nm3/h to 280.8 nm3/h as increasing Fe content from 15% to 35%. The main reason is that there is a large concentration gradient of Fe element in the vicinity of gamma/gamma ' interface, which obviously restricts Fe atoms from diffusing away. The change of yield strength with particle size can be explained by the strongly coupled dislocation shearing and Orowan bowing models. When Fe content is up to 35%, the yield strength of the alloy reduces more rapidly than the theoretical value due to the precipitation of harmful Laves phase in the intermediate stage of thermal exposure. |
关键词 | Ni-Fe-Cr based superalloy Fe content Microstructure Thermal exposure Tensile behavior |
资助者 | National Natural Science Foundation of China |
DOI | 10.1016/j.intermet.2022.107785 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China ; [51871213] |
WOS研究方向 | Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Chemistry, Physical ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000899525700001 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/175952 |
专题 | 中国科学院金属研究所 |
通讯作者 | Qin, Xuezhi; Zhou, Lanzhang |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China 3.Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Cheng, Sihan,Wang, Jiaqi,Wu, Yunsheng,et al. Microstructure, thermal stability and tensile properties of a Ni-Fe-Cr based superalloy with different Fe contents[J]. INTERMETALLICS,2023,153:12. |
APA | Cheng, Sihan,Wang, Jiaqi,Wu, Yunsheng,Qin, Xuezhi,&Zhou, Lanzhang.(2023).Microstructure, thermal stability and tensile properties of a Ni-Fe-Cr based superalloy with different Fe contents.INTERMETALLICS,153,12. |
MLA | Cheng, Sihan,et al."Microstructure, thermal stability and tensile properties of a Ni-Fe-Cr based superalloy with different Fe contents".INTERMETALLICS 153(2023):12. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论