Effects of microstructure coarsening and casting pores on the tensile and fatigue properties of cast A356-T6 aluminum alloy: A comparative investigation | |
Yang, Bao-Cheng1,2; Chen, Shuai-Feng1; Song, Hong-Wu1; Zhang, Shi-Hong1; Chang, Hai-Ping3; Xu, Shi-Wen3; Zhu, Zhi-Hua3; Li, Chang-Hai3 | |
通讯作者 | Song, Hong-Wu(hwsong@imr.ac.cn) |
2022-11-01 | |
发表期刊 | MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
![]() |
ISSN | 0921-5093 |
卷号 | 857页码:16 |
摘要 | A356 alloys processed mostly with the low pressure die casting method are always known to contain casting pores and inhomogeneous microstructure. In this study, the effects of microstructure coarsening and casting pores on the tensile and high-cycle fatigue properties of A356-T6 alloy are comprehensively investigated. The deformation behavior and fracture mechanisms are systematically analyzed by combining tensile tests and crystal plasticity finite element method (CP-FEM) simulations with distinctively initial microstructure features (fine microstructure, coarse microstructure, and coarse microstructure with pores). The results show that microstructure coarsening is presented in the notably grown alpha-Al dendrites, which leads to the connection and thickening of eutectic regions accompanied by the aggregative distribution of eutectic Si particles. With the coarsening microstructure, microcrack is easier to initiate in those thick eutectic regions, due to the higher stress concentration caused by the aggregated eutectic silicon. Particularly, the dominant crack propagation path changes from the trans-dendrite for fine microstructure to along eutectic regions with coarse microstructure. In addition, it confirms that the casting pores have larger detrimental effects on the tensile and fatigue properties than the microstructure coarsening in the aspects of crack initiation. Stress concentration is prone to be induced at the local edge of pore at the initial loading stage, resulting in the micro plastic deformation and lower fatigue properties. With the rapid strain accumulation in later stage, the microcracks can initiate prematurely at the local edge of pore, and thus lead to obvious decrease in tensile elongation. Moreover, a modified fatigue model considering the effects of casting pores and the microstructure difference is proposed to describe the fatigue performance of A356-T6 alloy. |
关键词 | A356-T6 alloy Casting pore Microstructure coarsening CP-FEM High -cycle fatigue |
资助者 | Institute of Metal Research, Chinese Academy of Sciences ; NSFC |
DOI | 10.1016/j.msea.2022.144106 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Institute of Metal Research, Chinese Academy of Sciences[E055A501] ; NSFC[52201148] |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000868909600001 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/176294 |
专题 | 中国科学院金属研究所 |
通讯作者 | Song, Hong-Wu |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shi changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China 3.CITIC Dicastal Co Ltd, Engn Technol Res Inst, Qinhuangdao 066011, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Bao-Cheng,Chen, Shuai-Feng,Song, Hong-Wu,et al. Effects of microstructure coarsening and casting pores on the tensile and fatigue properties of cast A356-T6 aluminum alloy: A comparative investigation[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2022,857:16. |
APA | Yang, Bao-Cheng.,Chen, Shuai-Feng.,Song, Hong-Wu.,Zhang, Shi-Hong.,Chang, Hai-Ping.,...&Li, Chang-Hai.(2022).Effects of microstructure coarsening and casting pores on the tensile and fatigue properties of cast A356-T6 aluminum alloy: A comparative investigation.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,857,16. |
MLA | Yang, Bao-Cheng,et al."Effects of microstructure coarsening and casting pores on the tensile and fatigue properties of cast A356-T6 aluminum alloy: A comparative investigation".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 857(2022):16. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论