IMR OpenIR
Machine-learning model for prediction of martensitic transformation temperature in NiMnSn-based ferromagnetic shape memory alloys
Tian, Xiaohua1; Shi, Dingding1; Zhang, Kun2,3; Li, Hongxing2; Zhou, Liwen1; Ma, Tianyou4; Wang, Cheng4; Wen, Qinlong5; Tan, Changlong2
通讯作者Zhang, Kun(kunzhang@hrbust.edu.cn) ; Tan, Changlong(changlongtan@hrbust.edu.cn)
2022-12-01
发表期刊COMPUTATIONAL MATERIALS SCIENCE
ISSN0927-0256
卷号215页码:7
摘要Martensitic transformation temperature (TM) of NiMnSn-based ferromagnetic shape memory alloys (FSMAs) is crucial to identifying the operating range of an application. From a materials design point of view, an efficient method that can predict the TM accurately should be strongly pursued, to meet various applications with different operating temperatures. In this paper, we demonstrate that machine learning (ML) can rapidly and accurately predict the TM in NiMnSn-based FSMAs. We evaluate the performance of four machine learning models, including Random Forest Regressor (RFR), Support Vector Regression (SVR), Linear Regression (LR), and XGBRegressor (XGBR) model. Three important features of Numa , Arc , and avg Ven are selected as the optimal feature combination for building the model. Moreover, to ensure the best generalization ability of the model, multiple methods of cross-validation (Leave-One-Out Cross-Validation, 3-fold Cross-Validation, and 5-fold Cross -Validation) are used. Finally, the XGBR model exhibits the best performance for predicting the TM (R2 = 0.903 and RMSE = 5.4, R25f = 0.869 and R23f = 0.838). The results of small deviation and variance proven that the XGBR model, proposed in this work, is suitable to be used to predict the TM of unknown NiMnSn-based FSMAs. This work is expected to promote the targeted design of FSMAs.
关键词Ferromagnetic shape memory alloys Martensitic transformation temperature Machine learning NiMnSn-based alloys XGBRegressor
资助者National Natural Science Foundation of China ; China Postdoctoral Science Foundation
DOI10.1016/j.commatsci.2022.111811
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; [51971085] ; [51871083] ; [52001101] ; [52271172] ; [2021M693229]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:000870259700006
出版者ELSEVIER
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/176362
专题中国科学院金属研究所
通讯作者Zhang, Kun; Tan, Changlong
作者单位1.Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
2.Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Harbin 150040, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
4.Harbin Univ Sci & Technol, Sch Sci, Harbin 150080, Peoples R China
5.Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
推荐引用方式
GB/T 7714
Tian, Xiaohua,Shi, Dingding,Zhang, Kun,et al. Machine-learning model for prediction of martensitic transformation temperature in NiMnSn-based ferromagnetic shape memory alloys[J]. COMPUTATIONAL MATERIALS SCIENCE,2022,215:7.
APA Tian, Xiaohua.,Shi, Dingding.,Zhang, Kun.,Li, Hongxing.,Zhou, Liwen.,...&Tan, Changlong.(2022).Machine-learning model for prediction of martensitic transformation temperature in NiMnSn-based ferromagnetic shape memory alloys.COMPUTATIONAL MATERIALS SCIENCE,215,7.
MLA Tian, Xiaohua,et al."Machine-learning model for prediction of martensitic transformation temperature in NiMnSn-based ferromagnetic shape memory alloys".COMPUTATIONAL MATERIALS SCIENCE 215(2022):7.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian, Xiaohua]的文章
[Shi, Dingding]的文章
[Zhang, Kun]的文章
百度学术
百度学术中相似的文章
[Tian, Xiaohua]的文章
[Shi, Dingding]的文章
[Zhang, Kun]的文章
必应学术
必应学术中相似的文章
[Tian, Xiaohua]的文章
[Shi, Dingding]的文章
[Zhang, Kun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。