IMR OpenIR
The non-dendritic microstructure arising from grain boundary formation and wetting: A phase-field simulation and experimental investigation of semi-solid deformation
Ren, Jian-kun1,2; Sun, Ming-yue1,3; Chen, Yun1; Xu, Bin1,3; Liu, Wei-feng1,2; Jiang, Hai -yang1,2; Cao, Yan-fei1; Li, Dian-zhong1
Corresponding AuthorSun, Ming-yue(mysun@imr.ac.cn) ; Li, Dian-zhong(dzli@imr.ac.cn)
2022-11-01
Source PublicationMATERIALS & DESIGN
ISSN0264-1275
Volume223Pages:12
AbstractThe semi-solid metal forming process can prevent the formation of unpopular dendritic microstructures but the mechanism remains unclear. To explore the underlying causes, a challenging phase-field simula-tion was performed, supported by a semi-solid experiment. The simulation managed to couple dendritic growth with melt flow and solid deformation, a process that few existing models or in situ experimental techniques could analyze. This study found that under deformation, grain boundary formation and wet-ting play a pivotal role in the formation of non-dendritic structures: it is the grain boundary formation and wetting that split the bending side-branch from dendrite trunk; the detached side-branch could then evolve into a non-dendritic morphology. The simulation showed that wetting could finish almost imme-diately after a moderate bending. This process appears similar to but is essentially distinct from the con-ventional explanation that describes dendrite fragmentation as mechanical breakage.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
KeywordPhase -field method Semi -solid deformation Grain boundary wetting Non-dendritic microstructure
Funding OrganizationNational Key Research and Development Program ; National Natural Science Foundation of China ; National Science and Technology Major Project of China ; Strategic Priority Research Program of the Chinese Academy of Sciences ; LingChuang Research Project of China National Nuclear Corporation ; Program of CAS Interdisciplinary Innovation Team ; Youth Innovation Promotion Association, CAS ; Special Scientific Projects of Inner Mongolia
DOI10.1016/j.matdes.2022.111111
Indexed BySCI
Language英语
Funding ProjectNational Key Research and Development Program[2018YFA0702900] ; National Natural Science Foundation of China[51774265] ; National Natural Science Foundation of China[51701225] ; National Science and Technology Major Project of China[2019ZX06004010] ; National Science and Technology Major Project of China[2017-VII-0008-0101] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDC04000000] ; LingChuang Research Project of China National Nuclear Corporation ; Program of CAS Interdisciplinary Innovation Team ; Youth Innovation Promotion Association, CAS ; Special Scientific Projects of Inner Mongolia
WOS Research AreaMaterials Science
WOS SubjectMaterials Science, Multidisciplinary
WOS IDWOS:000869924500004
PublisherELSEVIER SCI LTD
Citation statistics
Cited Times:10[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/176428
Collection中国科学院金属研究所
Corresponding AuthorSun, Ming-yue; Li, Dian-zhong
Affiliation1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
Recommended Citation
GB/T 7714
Ren, Jian-kun,Sun, Ming-yue,Chen, Yun,et al. The non-dendritic microstructure arising from grain boundary formation and wetting: A phase-field simulation and experimental investigation of semi-solid deformation[J]. MATERIALS & DESIGN,2022,223:12.
APA Ren, Jian-kun.,Sun, Ming-yue.,Chen, Yun.,Xu, Bin.,Liu, Wei-feng.,...&Li, Dian-zhong.(2022).The non-dendritic microstructure arising from grain boundary formation and wetting: A phase-field simulation and experimental investigation of semi-solid deformation.MATERIALS & DESIGN,223,12.
MLA Ren, Jian-kun,et al."The non-dendritic microstructure arising from grain boundary formation and wetting: A phase-field simulation and experimental investigation of semi-solid deformation".MATERIALS & DESIGN 223(2022):12.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Ren, Jian-kun]'s Articles
[Sun, Ming-yue]'s Articles
[Chen, Yun]'s Articles
Baidu academic
Similar articles in Baidu academic
[Ren, Jian-kun]'s Articles
[Sun, Ming-yue]'s Articles
[Chen, Yun]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Ren, Jian-kun]'s Articles
[Sun, Ming-yue]'s Articles
[Chen, Yun]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.