IMR OpenIR
Enhancing high-temperature tensile properties of Ni/Ni-W laminated composites for MEMS devices
Wang, Zhe-Xuan1; Liang, Fei2; Zhang, Guang-Ping2; Zhang, Bin1
通讯作者Zhang, Guang-Ping(gpzhang@imr.ac.cn) ; Zhang, Bin(zhangb@atm.neu.edu.cn)
2023-03-01
发表期刊JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN1005-0302
卷号138页码:129-137
摘要There is an increasing demand for materials with excellent mechanical performance for Micro-Electro-Mechanical System (MEMS) devices serving at elevated temperatures. However, how to enhance the high-temperature strength of the materials without losing their plasticity is a pending problem. Here, the Ni/Ni-W laminated composites with different monolayer thicknesses and the same ratio of the con-stituent layer thicknesses were fabricated successfully by using the dual-bath electrodeposition technique. The microstructure stability and tensile properties of annealed Ni/Ni-W laminated composites with dif-ferent monolayer thicknesses were investigated at 400 degrees C. The results show that the annealed Ni0.5/Ni-W0.05 laminated composites have both high yield strength (450 MPa) and excellent elongation to failure (25.1%) at 400 degrees C, being superior to that of the monotonic Ni (179 MPa and 17.7%). Such a high strength of the laminated composite at 400 degrees C results from the contribution of the intrinsically high strength of the Ni-W layers with excellent thermal stability, the thickness-constrained effect on grain growth of Ni layers and the interface coupling effect of heterogeneous structures. The good plasticity may be derived from the heterogeneous laminated structure and the decrease in the constituent layer thickness, provid-ing a good co-deformation ability. Basic mechanisms for the high tensile strength and good plasticity of the Ni/Ni-W laminated composites at 400 degrees C were analyzed theoretically. The findings reveal a poten-tial strategy to fabricate MEMS components with excellent high-temperature tensile properties through tailoring the microstructure thermal stability and the constituent layer scale.(c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
关键词Laminated composites MEMS Strength Plasticity High temperature
资助者National Natural Science Foundation of China ; Fundamen- tal Research Project of Shenyang National Laboratory for Materials Science
DOI10.1016/j.jmst.2022.08.008
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China ; Fundamen- tal Research Project of Shenyang National Laboratory for Materials Science ; [51971060] ; [L2019R18]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000884395400004
出版者JOURNAL MATER SCI TECHNOL
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/176693
专题中国科学院金属研究所
通讯作者Zhang, Guang-Ping; Zhang, Bin
作者单位1.Northeastern Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhe-Xuan,Liang, Fei,Zhang, Guang-Ping,et al. Enhancing high-temperature tensile properties of Ni/Ni-W laminated composites for MEMS devices[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2023,138:129-137.
APA Wang, Zhe-Xuan,Liang, Fei,Zhang, Guang-Ping,&Zhang, Bin.(2023).Enhancing high-temperature tensile properties of Ni/Ni-W laminated composites for MEMS devices.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,138,129-137.
MLA Wang, Zhe-Xuan,et al."Enhancing high-temperature tensile properties of Ni/Ni-W laminated composites for MEMS devices".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 138(2023):129-137.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhe-Xuan]的文章
[Liang, Fei]的文章
[Zhang, Guang-Ping]的文章
百度学术
百度学术中相似的文章
[Wang, Zhe-Xuan]的文章
[Liang, Fei]的文章
[Zhang, Guang-Ping]的文章
必应学术
必应学术中相似的文章
[Wang, Zhe-Xuan]的文章
[Liang, Fei]的文章
[Zhang, Guang-Ping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。