IMR OpenIR
Microstructure evolutions and deformation mechanisms of a Ni-based GH3536 Superalloy during loading at 293 K and 77 K
Wang, Yong-Qiang1,2; Yuan, Chao2; Zhang, Bing1,2; Gao, Xin-Yu1,2; Qiao, Shi-Chang1,2; Wen, Xin1,2; Chen, Yi-Peng1,2; Wang, Feng-Zhen1,2
Corresponding AuthorYuan, Chao(ychao@imr.ac.cn)
2023-12-01
Source PublicationMATERIALS CHARACTERIZATION
ISSN1044-5803
Volume206Pages:13
AbstractIn this study, tensile tests and interrupted experiments at different true strain levels were performed at 293 K and 77 K to reveal the deformation mechanisms of GH3536 superalloy during loading. The microstructure evolutions of the alloy with strain at both temperature were studied via Transmission electron microscopy (TEM), and dislocation densities were calculated by X-ray diffraction (XRD) for quantifying the forest hardening contribution to the flow stress. Deformation twins were rarely observed in the GH3536 superalloy specimens deformed at 293 K, where deformation occurred solely by dislocation slip. While twinning was initially found at a strain of similar to 7% at 77 K, and the corresponding stress at which twinning occurs is 808 +/- 46 MPa. The twin volume fractions, their widths and spacings were determined by electron backscatter diffraction (EBSD), which is used to investigate the twin evolution of GH3536 alloy at 77 K. The deformation mechanisms of GH3536 alloy, as well as its twinning behaviors, depend on the competition between the maximum flow stress and critical stress for twinning. The maximum flow stress is large enough to activate twinning at cryogenic temperature, resulting in the transition of deformation mechanisms for GH3536 alloy as SLIP (dislocation slip) at 293 K and TWIP+SLIP (deformation twinning and dislocation slip) at 77 K, and the improved combination of ductility and strength at 77 K compared to 293 K is derived from additional deformation mode provided by twinning during the process of deformation.
KeywordNickel -based superalloys Mechanical properties Deformation mechanism Microstructure Twinning
DOI10.1016/j.matchar.2023.113422
Indexed BySCI
Language英语
WOS Research AreaMaterials Science ; Metallurgy & Metallurgical Engineering
WOS SubjectMaterials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering ; Materials Science, Characterization & Testing
WOS IDWOS:001110022900001
PublisherELSEVIER SCIENCE INC
Citation statistics
Cited Times:8[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/177307
Collection中国科学院金属研究所
Corresponding AuthorYuan, Chao
Affiliation1.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
Recommended Citation
GB/T 7714
Wang, Yong-Qiang,Yuan, Chao,Zhang, Bing,et al. Microstructure evolutions and deformation mechanisms of a Ni-based GH3536 Superalloy during loading at 293 K and 77 K[J]. MATERIALS CHARACTERIZATION,2023,206:13.
APA Wang, Yong-Qiang.,Yuan, Chao.,Zhang, Bing.,Gao, Xin-Yu.,Qiao, Shi-Chang.,...&Wang, Feng-Zhen.(2023).Microstructure evolutions and deformation mechanisms of a Ni-based GH3536 Superalloy during loading at 293 K and 77 K.MATERIALS CHARACTERIZATION,206,13.
MLA Wang, Yong-Qiang,et al."Microstructure evolutions and deformation mechanisms of a Ni-based GH3536 Superalloy during loading at 293 K and 77 K".MATERIALS CHARACTERIZATION 206(2023):13.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Wang, Yong-Qiang]'s Articles
[Yuan, Chao]'s Articles
[Zhang, Bing]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wang, Yong-Qiang]'s Articles
[Yuan, Chao]'s Articles
[Zhang, Bing]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wang, Yong-Qiang]'s Articles
[Yuan, Chao]'s Articles
[Zhang, Bing]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.