IMR OpenIR
Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments
Gao, Zhang-Dan1,2; Ji, Zhong-Hai1,2; Zhang, Lili1; Tang, Dai-Ming3; Zou, Meng-Ke1,2; Xie, Rui-Hong1,2; Liu, Shao-Kang1,2; Liu, Chang1
通讯作者Zhang, Lili(zhangll@imr.ac.cn) ; Tang, Dai-Ming(tang.daiming@nims.go.jp) ; Liu, Chang(cliu@imr.ac.cn)
2023-10-01
发表期刊NEW CARBON MATERIALS
ISSN2097-1605
卷号38期号:5页码:887-894
摘要Vertically aligned carbon nanotube (VACNT) arrays with good mechanical properties and high thermal conductivity can be used as effective thermal interface materials in thermal management. In order to take advantage of the high thermal conductivity along the axis of nanotubes, the quality and height of the arrays need to be optimized. However, the immense synthesis parameter space for VACNT arrays and the interdependence of structural features make it challenging to improve both their height and quality. We have developed a literature mining approach combined with machine learning and high-throughput design to efficiently optimize the height and quality of the arrays. To reveal the underlying relationship between VACNT structures and their key growth parameters, we used random forest regression (RFR) and SHapley Additive exPlanation (SHAP) methods to model a set of published sample data (864 samples). High-throughput experiments were designed to change 4 key parameters: growth temperature, growth time, catalyst composition, and concentration of the carbon source. It was found that a screened Fe/Gd/Al2O3 catalyst was able to grow VACNT arrays with millimeter-scale height and improved quality. Our results demonstrate that this approach can effectively deal with multi-parameter processes such as nanotube growth and improve control over their structures.
关键词Vertically aligned carbon nanotube arrays Controlled growth Literature mining Machine learning High throughput
资助者National Natural Science Foundation of China ; JSPS KAKENHI ; Natural Science Foundation of Liaoning Province ; Liaoning Revitalization Talents Program ; Basic Research Project of Natural Science Foundation of Shandong Province, China
DOI10.1016/S1872-5805(23)60775-9
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51802316] ; National Natural Science Foundation of China[51927803] ; National Natural Science Foundation of China[52188101] ; National Natural Science Foundation of China[52130209] ; JSPS KAKENHI[JP20K05281] ; JSPS KAKENHI[JP25820336] ; Natural Science Foundation of Liaoning Province[2020-MS-009] ; Liaoning Revitalization Talents Program[XLYC2002037] ; Basic Research Project of Natural Science Foundation of Shandong Province, China[ZR2019ZD49]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:001101668500001
出版者ELSEVIER
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177362
专题中国科学院金属研究所
通讯作者Zhang, Lili; Tang, Dai-Ming; Liu, Chang
作者单位1.Chinese Acad Sci, Inst Met Res IMR, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
3.Natl Inst Mat Sci NIMS, Res Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
推荐引用方式
GB/T 7714
Gao, Zhang-Dan,Ji, Zhong-Hai,Zhang, Lili,et al. Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments[J]. NEW CARBON MATERIALS,2023,38(5):887-894.
APA Gao, Zhang-Dan.,Ji, Zhong-Hai.,Zhang, Lili.,Tang, Dai-Ming.,Zou, Meng-Ke.,...&Liu, Chang.(2023).Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments.NEW CARBON MATERIALS,38(5),887-894.
MLA Gao, Zhang-Dan,et al."Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments".NEW CARBON MATERIALS 38.5(2023):887-894.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Zhang-Dan]的文章
[Ji, Zhong-Hai]的文章
[Zhang, Lili]的文章
百度学术
百度学术中相似的文章
[Gao, Zhang-Dan]的文章
[Ji, Zhong-Hai]的文章
[Zhang, Lili]的文章
必应学术
必应学术中相似的文章
[Gao, Zhang-Dan]的文章
[Ji, Zhong-Hai]的文章
[Zhang, Lili]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。