IMR OpenIR
Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111)
Liu, Peitao1,2; Wang, Jiantao2; Avargues, Noah1; Verdi, Carla1; Singraber, Andreas3; Karsai, Ferenc3; Chen, Xing-Qiu2; Kresse, Georg1,3
通讯作者Liu, Peitao(ptliu@imr.ac.cn)
2023-02-17
发表期刊PHYSICAL REVIEW LETTERS
ISSN0031-9007
卷号130期号:130页码:6
摘要Adsorption of carbon monoxide (CO) on transition-metal surfaces is a prototypical process in surface sciences and catalysis. Despite its simplicity, it has posed great challenges to theoretical modeling. Pretty much all existing density functionals fail to accurately describe surface energies and CO adsorption site preference as well as adsorption energies simultaneously. Although the random phase approximation (RPA) cures these density functional theory failures, its large computational cost makes it prohibitive to study the CO adsorption for any but the simplest ordered cases. Here, we address these challenges by developing a machine-learned force field (MLFF) with near RPA accuracy for the prediction of coverage -dependent adsorption of CO on the Rh(111) surface through an efficient on-the-fly active learning procedure and a Delta-machine learning approach. We show that the RPA-derived MLFF is capable to accurately predict the Rh(111) surface energy and CO adsorption site preference as well as adsorption energies at different coverages that are all in good agreement with experiments. Moreover, the coverage -dependent ground-state adsorption patterns and adsorption saturation coverage are identified.
资助者Austrian Science Fund (FWF) within the SFB TACO ; National Natural Science Foundation of China ; National Key R&D Program of China ; National Science Fund for Distinguished Young Scholars
DOI10.1103/PhysRevLett.130.078001
收录类别SCI
语种英语
资助项目Austrian Science Fund (FWF) within the SFB TACO[F 81-N] ; National Natural Science Foundation of China[52201030] ; National Key R&D Program of China[2021YFB3501503] ; National Science Fund for Distinguished Young Scholars[51725103]
WOS研究方向Physics
WOS类目Physics, Multidisciplinary
WOS记录号WOS:000977331900004
出版者AMER PHYSICAL SOC
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177540
专题中国科学院金属研究所
通讯作者Liu, Peitao
作者单位1.Univ Vienna, Fac Phys, Ctr Computat Mat Sci, Kolingasse 14-16, A-1090 Vienna, Austria
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
3.VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria
推荐引用方式
GB/T 7714
Liu, Peitao,Wang, Jiantao,Avargues, Noah,et al. Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111)[J]. PHYSICAL REVIEW LETTERS,2023,130(130):6.
APA Liu, Peitao.,Wang, Jiantao.,Avargues, Noah.,Verdi, Carla.,Singraber, Andreas.,...&Kresse, Georg.(2023).Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111).PHYSICAL REVIEW LETTERS,130(130),6.
MLA Liu, Peitao,et al."Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111)".PHYSICAL REVIEW LETTERS 130.130(2023):6.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Peitao]的文章
[Wang, Jiantao]的文章
[Avargues, Noah]的文章
百度学术
百度学术中相似的文章
[Liu, Peitao]的文章
[Wang, Jiantao]的文章
[Avargues, Noah]的文章
必应学术
必应学术中相似的文章
[Liu, Peitao]的文章
[Wang, Jiantao]的文章
[Avargues, Noah]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。