IMR OpenIR
Understanding geometrical size effect on fatigue life of A588 steel using a machine learning approach
Yang, Wen-Ke1,2; Hu, Bing-Li1,2; Luo, Yan-Wen3; Song, Zhu-Man1; Zhang, Guang-Ping1
通讯作者Zhang, Guang-Ping(gpzhang@imr.ac.cn)
2023-07-01
发表期刊INTERNATIONAL JOURNAL OF FATIGUE
ISSN0142-1123
卷号172页码:11
摘要In this paper, both experimental and machine learning results show that the fatigue life of A588 steel specimens with different gauge lengths and widths varies more greatly compared with that of the specimens with different thicknesses as the gauge dimensions are reduced from 15 mm to 1.5 mm. The optimal machine learning algorithm is derived to predict the fatigue life of specimens with a thickness of 1 mm, and the predicted results are verified by the fatigue experiments.
关键词Size effect Small specimen Fatigue life Machine learning
资助者National Key R & D Program of China ; National Natural Science Foundation of China (NSFC) ; Fundamental Research Project of Shenyang National Laboratory for Materials Science
DOI10.1016/j.ijfatigue.2023.107671
收录类别SCI
语种英语
资助项目National Key R & D Program of China[2022YFB4601001] ; National Natural Science Foundation of China (NSFC)[52171128] ; Fundamental Research Project of Shenyang National Laboratory for Materials Science[L2019R18]
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary
WOS记录号WOS:000981658400001
出版者ELSEVIER SCI LTD
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177708
专题中国科学院金属研究所
通讯作者Zhang, Guang-Ping
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, 72 Wenhua Rd, Shenyang 110016, Peoples R China
3.Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, 3-11 Wenhua Rd, Shenyang 110819, Peoples R China
推荐引用方式
GB/T 7714
Yang, Wen-Ke,Hu, Bing-Li,Luo, Yan-Wen,et al. Understanding geometrical size effect on fatigue life of A588 steel using a machine learning approach[J]. INTERNATIONAL JOURNAL OF FATIGUE,2023,172:11.
APA Yang, Wen-Ke,Hu, Bing-Li,Luo, Yan-Wen,Song, Zhu-Man,&Zhang, Guang-Ping.(2023).Understanding geometrical size effect on fatigue life of A588 steel using a machine learning approach.INTERNATIONAL JOURNAL OF FATIGUE,172,11.
MLA Yang, Wen-Ke,et al."Understanding geometrical size effect on fatigue life of A588 steel using a machine learning approach".INTERNATIONAL JOURNAL OF FATIGUE 172(2023):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Wen-Ke]的文章
[Hu, Bing-Li]的文章
[Luo, Yan-Wen]的文章
百度学术
百度学术中相似的文章
[Yang, Wen-Ke]的文章
[Hu, Bing-Li]的文章
[Luo, Yan-Wen]的文章
必应学术
必应学术中相似的文章
[Yang, Wen-Ke]的文章
[Hu, Bing-Li]的文章
[Luo, Yan-Wen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。